
Dataset Discovery in Data Lakes

Alex Bogatu, Alvaro A.A. Fernandes, Norman W. Paton, Nikolaos Konstantinou
School of Computer Science, University of Manchester, Manchester, UK

alex.bogatu@manchester.ac.uk

Abstract—Data analytics stands to benefit from the increasing
availability of datasets that are held without their conceptual re-
lationships being explicitly known. When collected, these datasets
form a data lake from which, by processes like data wrangling,
specific target datasets can be constructed that enable value–
adding analytics. Given the potential vastness of such data lakes,
the issue arises of how to pull out of the lake those datasets that
might contribute to wrangling out a given target. We refer to this
as the problem of dataset discovery in data lakes and this paper
contributes an effective and efficient solution to it. Our approach
uses features of the values in a dataset to construct hash–
based indexes that map those features into a uniform distance
space. This makes it possible to define similarity distances
between features and to take those distances as measurements of
relatedness w.r.t. a target table. Given the latter (and exemplar
tuples), our approach returns the most related tables in the lake.
We provide a detailed description of the approach and report on
empirical results for two forms of relatedness (unionability and
joinability) comparing them with prior work, where pertinent,
and showing significant improvements in all of precision, recall,
target coverage, indexing and discovery times.

Index Terms—data discovery, table search, data wrangling

I. INTRODUCTION

The number of external (and internal) datasets, of increasing

diversity, that are available for organizations to use continues

to grow, and we find ourselves past the point where one could

impose upon any collection of such datasets any global, con-

ceptually cohesive, model that captures their interrelationships.

It has become easy to amass datasets that have great potential

for analytics, but with the lack of conceptual cohesion comes

a greater difficulty to even discover the most useful datasets

for say, a given analytic task.

There is still no consensus on what the notion of a data

lake denotes. In this paper, we take a data lake to be a

repository whose items are datasets about which, we assume,

we have no more metadata than, when in tabular form, their

attribute names, and possibly their domain-independent types

(i.e., string, integer, etc.). We view open government data

repositories as exemplar data lakes.

We view the process of doing analysis on data from a data

lake as being dependent on data wrangling [1] and, as such,

comprising many stages (e.g., [2], [3]). This paper views the

basic, initial stage as one of dataset discovery, that filters the

(otherwise unmanageable) input for subsequent stages such as

schema matching (e.g., [4]), format transformation (e.g., [5]),

or schema mapping generation (e.g., [6], [7]), i.e., given a

target (which ideally includes exemplar tuples and expected

attribute names), find which datasets are most useful as inputs

for data wrangling. By most useful, we mean datasets (or

possibly projections thereof) that are unionable with the target,

and, desirably, joinable with each other. Given a target, our

objective is to identify related datasets from a data lake that are

relevant for populating as many target attributes as possible.

Example 1: Consider Figure 1. The target T contains in-

formation about general practices (i.e., family doctors/primary

care centers). We want to find tables (e.g., S1 and S2) useful

for populating T . Moreover, assuming S3 and T are not

strongly related, we want to find join opportunities (e.g., of

Practice Name/Practice in S1/S2 with GP in S3) that allow

us to increase target coverage by populating Hours in T .

In this paper, we contribute a solution to the data discovery

problem. Our approach, which we refer to as D3L (for Dataset

Discovery in Data Lakes), can broadly be seen as similarity-

based in the sense that, from the attribute names and values in

each dataset in the lake, we extract features that convey signals

of similarity. We extract five types of features that we map to

values in locality-sensitive hashing (LSH) indexes [8], thereby

guaranteeing that shared bucket membership is indicative of

similarity as per the hash function used. Specifically, we make

the following contributions:

• We propose a new distance–based framework that, given

a target, can efficiently determine the relatedness between

target attributes and attributes of datasets in a lake. We

do this using five types of evidence: (i) attribute name
similarity, when schema–level information is available; (ii)

attribute extent overlap, when attributes share common

values; (iii) word–embedding similarity, when attributes

are semantically similar but have different value domains;

(iv) format representation similarity, when attribute values

follow regular representation patterns; and (v) domain dis-
tribution similarity, for numerical attributes.

• We show how to map the signal from each of the above

evidence types onto a common space such that the resulting

attribute distance vectors combine the separate measure-

ments of relatedness, and propose a weighting scheme that

reflects the signal strength from different evidence types.

• We extend the notion of relatedness to tables whose simi-

larity signal with the target is weak but that join with tables

that contribute values to additional target attributes.

• We empirically show, using both real-world and synthetic

data, that D3L is significantly more effective and more

efficient than the state–of–the–art (specifically, [9], [10]).

II. RELATED WORK

Data lakes are usually seen as vast repositories of company,

government or Web data (e.g., [11], [12]). Previous work has

709

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00067

S1: Source: GP practices
Practice Name Address City Postcode Patients

Dr E Cullen 51 Botanic Av Belfast BT7 1JL 1202
Blackfriars 1a Chapel St Salford M3 6AF 3572

S2: Source: GP funding
Practice City Postcode Payment

The London Clinic London W1G 6BW 73648
Blackfriars Salford M3 6AF 15530

S3: Source: Local GPs
GP Location Opening hours

Blackfriars Salford 08:00-18:00
Radclife Care - 07:00-20:00

T : Target: GPs
Practice Street City Postcode Hours

Radclife 69 Church St Manchester M26 2SP 07:00-20:00
Bolton Medical 21 Rupert St Bolton BL3 6PY 08:00-16:00

Fig. 1: Example Tables

considered dataset discovery in the guise of table augmentation

and stitching (e.g., [13], [14]), unionability discovery, or

joinability discovery (e.g., [9], [10], [15], [16]). We add to

this work with a focus on a notion of relatedness, defined in

the next section, construed as unionability and/or joinability.

LSH. We build upon locality–sensitive hashing (LSH), an

approach to nearest–neighbours search in high–dimensional

spaces [8]. LSH requires hash functions whose collision

probability is high for similar inputs, and lower for those

that are more different. Several such functions have been

proposed for different similarity metrics, e.g., [17]–[19]. Given

an LSH index, the similarity degree of two items is given

by the number of buckets, i.e., index entries, containing both

items, and the kind of similarity achieved depends on the hash

function used. In this paper we rely on two such hash functions

that return hash values with high probability of collision for

inputs with high Jaccard similarity: MinHash [18], and with

high cosine similarity: random projections [19].

In practice, we use LSH Forest [20], an extension to LSH

that largely ensures that for an answer size k, the search

time varies little with the size of the repository. One other

LSH improvement, compatible with our use case, is LSH

Ensemble [21], which proposes an indexing scheme that aims

to overcome the weaknesses of MinHash when used on sets

with skewed lengths.

LSH–based dataset discovery. LSH has been adopted by the

data management research community due to its useful prop-

erties regarding similarity estimation, associated with linear

retrieval times w.r.t the search space size [22]. One example

is Aurum [9] (and its extension from [16]), a system to build,

maintain and query an abstraction of a data lake as a knowl-

edge graph. Similarly, Table Union Search [10] focuses on the

problem of unionability discovery between datasets, treated

as an LSH index lookup task. As we do, both proposals use

LSH–based indexes to efficiently search for related attributes

in data repositories. While the underlying data structures used

in both cases are similar to the ones we rely on, there are

a number of key differences: (i) we make use of more types

of similarity, whose combined import is to inform decisions

on relatedness with a diversity of signals; (ii) we adopt an

approach based on schema– and instance–level fine–grained

features that prove more effective in identifying relatedness,

especially in cases when similar entities are inconsistently

represented; (iii) we map these features to a uniform distance

space that offers a holistic view on the notion of relatedness

between attributes, to which each type of similarity evidence

contributes, as instructed by an underlying weighting scheme.

Web data integration: The discovery of unionable/joinable

Web tables has been studied in Octopus [23] which combines

search, extraction and cleaning operators to create clusters

of unionable tables by means of string similarities and Web

metadata. Das Sarma et al. [15] identify entity complemen-

tary (unionable) and schema complementary (joinable) tables

by using knowledge–bases to label datasets at instance and

schema levels, leading to a decision on their unionability and

joinability. We too search for such tables but, because we

envisage the need for downstream wrangling, we assume a

target table and refrain from relying on Web knowledge–bases

or external metadata as such data will not always be available.

Data lake management systems: Data lakes have been the

focus of recent research on data management systems, e.g.,

[24], [25]. Such proposals focus on data lifecycle and rely

on extensible metadata models and parsing frameworks for

different data types, tailored for the challenges faced by the

organization that builds and uses the data lake, e.g., Goods

[25], is highly oriented towards rapidly changing data sets.

III. RELATEDNESS DISCOVERY

Before describing our approach in detail, we formally define

the relatedness of a dataset S w.r.t. a target T as follows:

Definition 1: Given a dataset S with attributes a1, . . . , an
and a target dataset T with attributes a′1, . . . , a′m, we say

that S and T are related iff ∃ai ∈ {a1, . . . , an}, so that ai
contains values drawn from the same domain represented by

some attribute a′j ∈ {a′1, . . . , a′m}, and, therefore, is relevant

for populating a′j , i.e., ai and a′j are attribute–level related.

Given two datasets S1 and S2 related w.r.t. a target T , the

following properties follow from Definition 1:

• S1 and S2 can have different degrees of relatedness to T ,

subject to how many of their attributes are related to some

target attribute and to how strongly related the attributes are.

• S1 and S2 are unionable on the attributes related to the same

target attribute and each is unionable with the target itself.

We focus on relatedness–by–unionability in this section.

• If S1 and S2 are joinable as well, then the projection from

their join result of the attributes related to some target

attribute is, potentially, related to T as well. We explore

this property in Section IV.

710

We consider relatedness to also imply similarity, and quan-

tify the former using distance measures: the closer, the more

similar, and the more similar, the more related.

A. Attribute Relatedness: Relatedness evidence

We first aim to identify related attributes, i.e., attributes

whose values can be used to populate some attribute in the

target, and to quantify their degree of relatedness. Strictly, this

can only be done if they store values for the same property

type of the same real world entity. However, data lakes are

characterized by a dearth of metadata. There is a need, then,

to decide whether two attributes from two datasets are related

relying only on evidence that the datasets themselves convey.

We use five types of evidence for deciding on attribute relat-

edness: names (N), values (V), formats (F), word-embeddings

(E) [26], and domain distributions (D). From names we derive

q–grams; from values we derive tokens, format–describing

regular expressions and word–embeddings; and from extents

we derive domain distributions. Note that, in the case of both

attribute names and attribute values, we break up string rep-

resentations with a view to obtaining finer-grained evidence.

The motivation is the expected “dirtiness” of the data lake,

e.g., attributes may have names or values that denote the

same real-world entity but are represented differently. Using

finer–grained evidence implies that our approach is lenient in

identifying related attributes, reducing the impact of dirty data.

This is an important point of contrast with related work, as

the experimental results will show.

Let a and a′ be attributes with extents [[a]] and [[a′]], resp.

We now describe how we aim to capture similarity signals for

each type of evidence:

N : given an attribute name, we transform it into a set of

q-grams (qset, for short), aiming to construe relatedness

between attribute names as the Jaccard distance between their

qsets. Let Q(a) denote the qset of a.

V : given an attribute value, we transform it into a set of

informative tokens (tset, for short). By informative, we mean

a notion akin to term-frequency/inverse-document-frequency

(TF/IDF) from information retrieval, as explained later. We

aim to construe relatedness between attribute values as the

Jaccard distance between their tsets. Let T (a) denote the

union of the tsets of every value in [[a]].
F : given an attribute value, we represent its format (i.e., the

regular, predictable structure of, e.g., email addresses, URIs,

dates, etc.) by a set of regular expressions (rsets, for short)

grounded on a set of primitives we describe later. We aim to

construe relatedness between attribute value formats as the

Jaccard distance of their rsets. Let R(a) denote the union of

the rsets of every value v in [[a]].
E : given an attribute value that has textual content, we

capture its context-aware semantics as described by a word–
embedding model (WEM) [27], as follows: each word in

the attribute value is assigned a vector (with WEM-specific

dimension p) that denotes its position in the WEM-defined

space. The p-vectors of each such word are then combined

into a p-vector for the whole attribute. We aim to construe

relatedness between attribute values with textual content as

the cosine distance of their vectors. Let �a denote the set of

word-embedding p-vectors of every value in [[a]].
D : given a numeric attribute, only N and F are useful

in construing similarity, as the others (viz., V and E) are

dependent on the existence of structural components (viz.,

tokens and words) that can only be reasonably expected in

non-numeric data. So, we aim to construe relatedness be-

tween numeric attribute values as the Kolmogorov-Smirnov

statistic (KS) [28] over their extents understood as samples

of their originating domain. The smaller KS is, the closer

the attributes are w.r.t. to their value distribution.

B. Attribute Relatedness: Distance Computation

Each of the five types of evidence above gives rise to a

distance measure bounded by the [0, 1] interval. Given two

attributes a and a′, from different features of their respective

names and extents, all of which carry useful but different

signals of relatedness, we can compute the following distances:

name : DN(a, a
′) = 1− (Q(a)∩Q(a′))/(Q(a)∪Q(a′)), i.e.,

the Jaccard distance between their qsets.

value : DV(a, a
′) = 1− (T (a)∩ T (a′))/(T (a)∪ T (a′)), i.e.,

the Jaccard distance between their tsets.

format : DF(a, a
′) = 1−(R(a)∩R(a′))/(R(a)∪R(a′)), i.e.,

the Jaccard distance between their rsets.

embedding : DE(a, a
′) = 1 − ((�aT�a′)/(|�a| · |�a′|)), i.e., the

cosine distance between their word-embedding vectors.

domain : DD(a, a
′) = KS([[a]], [[a′]]), i.e., the KS computed

over their extents.

In order to avoid carrying pairwise comparisons in com-

puting the above distances, as others have done, e.g., [10],

[9], we adopt an approximate solution based on LSH that

offers efficient distance computation, at the potential expense

of accuracy. To this end, we use Jaccard and cosine dis-

tances because of their property of being locality–sensitive (

[18], [19]). Specifically, the probability that MinHash/random–

projections returns the same hash value for two sets is ap-

proximately equal to their Jaccard/cosine similarity. Since

N–, V–, F–relatedness are grounded on Jaccard similarity,

and E–relatedness is grounded on cosine similarity, we use

MinHash/random projections to efficiently approximate the

above distances. We do not use the same strategy for D–

relatedness because there is no LSH hashing scheme that leads

to analogous gains.

In our approach, given a data lake S and a target table

T , finding the set of k–most related datasets in S to T is a

computational task performed after indexing S. For a given S ,

we build four LSH indexes, which, resp., are used to compute

N–, V–, F–, and E–relatedness between attributes. We call

these indexes IN, IV, IF, and IE, resp. Given two attributes

a and a′, they are N (resp., V, F, and E)–related if a′ ∈
IN.lookup(a) (and resp. for the other indexes). Index insertion

is shown in Algorithm 1. The subroutines in sans–serif are

described below, by reference to Example 2.

711

Algorithm 1 Index construction

Input: Indexes IN, IV, IE, IF, Attribute a
Output: Updated IN, IV, IE, IF

1: function INSERTINTOINDEXES

2: Q(a)← {};T (a)← {};R(a)← {};�a← {};
3: H ← histogram.new()
4: Q(a)← get qgrams(a)
5: for all v ∈ [[a]] do
6: H.insert(get tokens(v))
7: R(a)← R(a) ∪ get regex string(v)
8: end for
9: for all t ∈ H.infrequent() do

10: T (a)← T (a) ∪ {t}
11: end for
12: for all t ∈ H.frequent() do
13: �a← �a ∪ get embedding(t)
14: end for
15: IN.insert(MinHash(Q(a)))
16: IV.insert(MinHash(T (a)))
17: IE.insert(RandomProjections(�a))
18: IF.insert(MinHash(R(a)))
19: end function

Example 2: Let a be an attribute, with name Address and

extent [[a]] = {’18 Portland Street, M1 3BE’, ’41 Oxford

Road, M13 9PL’ ’9 Mirabel Street, M3 1NN’ }.
• get qgrams(a): Obtaining the qset Q(a) of an attribute a

is the straightforward procedure of computing the q–grams

of its name. We have used q = 4 as this avoids having

too many similar qset pair candidates, while benefiting from

fine–grained comparisons of attribute names. For Example

2, get qgrams(a) = {addr, ddre, dres, ress}.
• frequent/infrequent tokens: The tset T (a) and word–

embedding vector �a of an attribute value are obtained in

tandem by construing the extent of a as a set of documents,

a value v as a document, each document as a set of

parts (split at punctuation characters), and each part as a

set of words. With one pass on the extent, we tokenize

the values (get tokens(v)) and construct a histogram of

token occurrences (which we assume to have an associated

data structure from which we can retrieve its frequent
and infrequent token sets). Then, for each part in the

value/document, the procedure (a) adds to T (a), the word t
in that part that has the fewest occurrences in the extent, and

(b) takes the word in that part that has the most occurrences

in the extent, retrieves its word-embedding vector from

the WEM1 and adds that vector to �a. For Example 2,

get tokens(a) = {portland, 3BE, oxford, 9PL, . . .}. Note

that since terms like ’street’, ’road’, or the area–level tokens

in the UK postcode information are frequently occurring

they are considered weak signal carriers of value–level

1In machine learning research, many WEMs already exist that vectorize
the context in which a word appears in the corpus from which the WEM was
built. In this paper, we have used fastText [27] as our WEM.

similarity, i.e., not part of T (a). However, such terms are

indicative of the possible domain–specific types from which

the attribute extent is drawn, viz., Address in this case.

Therefore, they are the terms for which word-embedding

vectors are sought, i.e, get embedding(t).
• get regex string(v): The rset R(a) of an attribute value

builds on the following set of primitive lexical classes

defined by regular expressions: C = [A − Z][a − z]+,

U = [A − Z]+, L = [a − z]+, N = [0 − 9]+, A =
[A−Za−z0−9]+, P = [., ; : /−]+. P also includes any other

character not caught by previous primitive classes. Given an

attribute value, we tokenize it and, for each token t, once

we find its matching lexical class l, we add its denoting

symbol to a string that describes the format for the value,

and add that string to the set representation R(a). If the

same symbol appears consecutively, all occurrences but the

first are replaced by ’+’, e.g., {NC+P+A+}. If an attribute

value matches more than one primitive class, we choose the

first match, in the order enumerated above.

The set representations, obtained as described above, of

related attributes are hashed into similar LSH partitions, i.e.,

rather than indexing full attribute names/values we index set

representations, so that signals are both finer–grained and

crisper. We can then define N–, V– and F–relatedness in terms

of Jaccard similarity of the corresponding set representations,

and E–relatedness in terms of cosine similarity of the corre-

sponding set representations, and efficiently approximate these

measures: Jaccard/cosine distance between two set represen-

tations is approximated by the bit–level similarity of their

MinHash/random–projection values.

C. Attribute Relatedness: The Numeric Case

Numeric attributes are a special case in our framework. Of

the four types of evidence we take into account, only names

and formats provide relatedness evidence when dealing with

numbers. This is because numbers cannot be analyzed in terms

of tokens as usefully as text can. Hence, token frequency

and word–embedding vectors are not useful signals. Moreover,

LSH hashing schemes are not available that can be applied to

features that we are able to extract from numeric values. So,

we do not index numeric values into the respective indexes. We

do index them into the name– and format–related indexes even

though, for numbers, formatting is less indicative of conceptual

equivalence. For example, an attribute denoting the age of a

person might share many values with an attribute denoting the

person’s weight or height and it is difficult to think of features

that might provide the kind of diversity of viewpoints that we

adopt for textual values. In such cases, given two attributes, we

ground the decision of relatedness on a distribution similarity

measure, the Kolmogorov-Smirnov (KS) statistic [28], and use

it to decide whether the two corresponding extents, seen as

samples, are drawn from the same distribution.

Algorithm 2 describes how we characterize D-relatedness.

We use evidence from the N and F indexes in a decision on

whether we proceed to consider the D–relatedness or not. In

addition, in Algorithm 2, we rely on the notion of a subject

712

Algorithm 2 Computing D-relatedness

Input: Numeric attributes a in table T and a′ in table S
Output: DD(a, a

′)

1: function COMPUTEDD

2: i← get subject attribute(T)
3: i′ ← get subject attribute(S)
4: if i′ ∈ I∗.lookup(i) then return KS([[a]], [[a′]])
5: else if a′ ∈ IN.lookup(a) then return KS([[a]], [[a′]])
6: else if a′ ∈ IF.lookup(a) then return KS([[a]], [[a′]])
7: else return 1

8: end if
9: end function

attribute to contextualize the numerical value in terms of the

entity of which it is a presumed property. To identify such

attributes, we use the supervised learning technique proposed

by Venetis et al. [29] 2. Given a dataset, a subject attribute

identifies the entities the dataset is about, whereas non-subject

attributes describe properties of the identified entity [15],

[29]. Intuitively, this approach favours leftmost non-numeric

attributes with fewer nulls and many distinct values. As in

[15], we assume each dataset has only one subject attribute

and that this attribute has non-numeric values. For example,

in Figure 1, the subject attribute of S1 is Practice Name, the

subject attribute of S2 is Practice, the subject attribute of S3

is GP, and the subject attribute of T is Practice.

We only compute KS, our measure of D-relatedness when

there is sufficient evidence from indexes we already have that a
and a′ are related, thereby benefiting from the blocking effect

they give rise to. In Algorithm 2, by I∗ we mean look-ups on

all of IN, IV, IE, and IF, with an existential interpretation, i.e.,

membership in any one of them.

D. Deciding on Table Relatedness

We have described the types of evidence and corresponding

indexes upon which attribute relatedness is defined. We now

explain how we use them to return, given a target table and

exemplar tuples, the list of its k-most related datasets.

Given a target T with attributes {a1, . . . , an}, for each ai
we obtain its set representations and use the corresponding

hashing schemes to retrieve, from each of the four indexes,

each attribute that is related to ai paired with the corresponding

relatedness measure (i.e., its distance to ai). For each related

attribute, four distances are returned. If both ai and the

related attribute are numeric, there may be a distribution-based

measurement (depending on the guards previously described)

computed using the KS statistic, otherwise that measurement

is set to 1 (i.e., maximally distant).

Consider again the example in Figure 1 where, for each

target attribute, we retrieve similar in–lake attributes using

the indexes. We group the results by the dataset the attributes

2We have built a classification model (invoked in get subject attribute)
and 10-fold cross-validated it on 350 datasets from data.gov.uk with manually
identified subject attributes. The average accuracy is 89%.

TABLE I: Example Distances for T and S2 in Figure 1

Pair DN DV DF DE DD

(T.Practice, S2.P ractice) 0.0 0.9 0.6 0.2 1.0
(T.City, S2.City) 0.0 0.2 0.2 0.3 1.0
(T.Postcode, S2.Postcode) 0.0 0.6 0.1 0.8 1.0

originate from. As an example of the structures that are created

through this grouping (one for each dataset that has at least

one attribute that is related to some target attribute), consider

Table I. Here, we use hypothetical distance values (the exact

ones can be obtained by applying the formulas from Section

III-A on the the sets representations of each attribute pair) to

exemplify the degree of similarity between attribute pairs. The

table contains three rows because, of the five attributes in the

target T in Figure 1, only three attributes in the S2 dataset

are in any degree related to it. Pairs (T.Practice, S2.Practice)

and (T.City, S2.City) have identical attribute names so DN is

0. For all three pairs in the table, we have DV and DE smaller

than 1, which means that there is evidence of their V– and E–

relatedness, and the distribution distance DD equal to 1, since

all three pairs contain attributes with textual values.

Given the two data sets T and S2, in order to compute their

relatedness distance, we want to aggregate, column–wise, the

distances that appear in the cells of Table I, i.e., the distances

between their related attributes, to obtain a 5–dimensional

vector that captures the relatedness between the two corre-

sponding datasets. We aggregate using a weighted average

of the relatedness distances D = {DN, DV, DF, DE, DD} to

obtain the desired 5-dimensional vector.

More formally, let T and S refer to the target and source

tables from which Table I is constructed. We use Equation 1

on each column of Table I to aggregate its values:

Dt(T, S) =

∑m
i=1 w

i
tD

i
t∑m

i=1 w
i
t

(1)

with m, the number of attributes in T that are related to some

attribute in S, and t ∈ {N,V,F,E,D}.
We must define the weights to use in Equation 1. Recall

that, for each distance type t, by performing a look–up on the

corresponding index for a target attribute a, we retrieve every

attribute of datasets in the lake that is related to a, paired

with the corresponding relatedness measure, i.e., its distance

to a computed as described in Section III-B. In other words,

for each target attribute a, we can compute a distribution of

relatedness measurements of type t, i.e., the set of all distances

of type t between a and every attribute in the lake that is

related to a. We denote such a set as Rt. Given a distance

value Di
t between two attributes, e.g., a cell value from Table

I, its associated weight wi
t is given by the complementary

cumulative distribution function evaluated at Di
t:

wi
t = 1− P (d ≤ Di

t), ∀d ∈ Rt (2)

Intuitively, each weight wi
t represents the probability that

the observed distance Di
t is the smallest in Rt. This allows

713

the weights to compensate for the presence of a potentially

high number of weakly related attributes to a target attribute.

As an example, consider again the pair of datasets (T, S2)
from Figure 1, with their aligned attributes shown in Table

I. For each t ∈ {N,V,F,E,D}, we use the distribution,

Rt, of all computed distances of type t between the target

attribute and all other t–related attributes in the lake, to

decide how important a given distance Di
t is in Equation 1.

For instance, if S2.Postcode is among the most V–related

attributes to T.Postcode in the entire data lake, D3
V

(i.e., the

third value on DV column of Table I) will have a high weight

in Equation 1 denoting a strong relatedness signal, relative

to all other attributes V–related to T.Postcode. Conversely,

if S2.Postcode is among the least E–related attributes to

T.Postcode in the entire data lake, D3
E

will have a low weight

in Equation 1 denoting a weak relatedness signal, relative to

all other E–related attributes to T.Postcode.

Equation 1 is applied on each column of a table like

Table I, and this results in a 5-dimensional vector, �dv(T,S) =
[DN(T, S), DV(T, S), DF(T, S), DE(T, S), DD(T, S)]. In or-

der to derive a scalar value from �dv(T,S) that can stand as a

measurement of the relatedness between T and S, we consider

S to be a point in a 5–dimensional Euclidean space, where

each distance measure represents a different dimension. In this

space, the coordinates of T are [0, 0, 0, 0, 0]. This allows us to

compute a combined distance of S from T using the weighted

l2–norm of �dv(T,S) (i.e., the weighted euclidean distance):

D(T, S) =

√∑5
t=1(wt × �dv(T,S)[t])2∑5

t=1 wt

(3)

Again, we must define the weights to use in Equation 3.

Note that here the weights represent a proposal as to the

relative importance of each evidence type t, i.e., each type

of relatedness measure. We started by construing relatedness

discovery as a binary classification problem. Then:

1) We used the benchmark provided in [10], which comes

with the ground truth about relatedness, to create a training

set by choosing related and unrelated pairs of the form

(T, S) (i.e., positive and negative examples, resp.) from

the benchmark ground truth. In the training set, if S is

related to T , then we label the pair as related (i.e., 1),

otherwise we label it as unrelated (i.e., 0). Each such pair

has a feature vector of five associated elements, i.e., the

five distance measures obtained through Equation 1.

2) We built a logistic regression classifier using the training

set, relying on coordinate descent [30] to optimize the

coefficient of each feature. We tested the resulting model

against a test set, created similarly to the training set, using

data from a ground truth of a manually created real–world

benchmark, and obtained an accuracy of approx. 89%.

Details about the test benchmark are given in Section V.

3) We used the coefficients of the resulting model as the

respective weights in Equation 3.

Algorithm 3 Join paths discovery

1: function FINDJOINPATH(start, path)

2: path.append(start)
3: for all Ni ∈ GS .neighbours(start) do
4: if Ni /∈ Sk && Ni /∈ path && Ni ∈

I∗.lookup(T) then
5: new path← FINDJOINPATH(Ni, path)
6: J ← J ∪ {new path}
7: end if
8: end for
9: return path

10: end function

The intuition is that the classifier coefficients will minimize

the distance between highly–related datasets and maximize it

between unrelated datasets.

Given a target table T to be populated, and a data repository

S = {S1, S2, ..., Sn}, the dataset discovery problem is the

problem of finding the k-most related datasets to T in S , where

dataset relatedness is measured using Equation 3.

IV. EXTENDING RELATEDNESS THROUGH JOIN PATHS

The techniques described so far construe relatedness dis-

covery as finding datasets in the lake with attributes that are

aligned (by which we mean ‘related by any of the evidence

types’) to as many attributes in the target as possible. In

this section, we show how some of the indexes we build

for characterizing similarity can be used to discover join

opportunities between the k–most related tables to a target and

non–top–k tables. Thus, tables with weaker relatedness signal

are included in the solution if, through joins, they contribute

to covering more attributes in the target.

Given a target T , let S = {S1, . . . Sn} be the set of all

datasets from a data lake, and Sk, k ≤ n, the k-most related

datasets to T . In this section, we describe how we identify

datasets in S − Sk that, through joins with datasets in Sk,

contribute to populating T .

We focus on joins based on postulated (possibly partial)

inclusion dependencies. Although these can be computed using

data profiling techniques [31], this is not practical given the

size of the data lakes we are focusing on, i.e., the size of the

all-against-all attributes search space. As such, we consider

two datasets S and S′ to be joinable if they are SA–joinable
(SA for subject–attribute: described in Section III-C) and we

consider S and S′ to be SA–joinable if (i) there is IV-based

evidence that the tsets T (a) and T (a′), where a and a′ are

attributes of S and S′, resp., overlap, and (2) at least one of

a or a′ is a subject attribute. Thus, we rely on IV to identify

inclusion dependencies and, instead of the notion of candidate

key, we use subject attributes.

To determine whether two tsets overlap, we define the over-
lap coefficient between two tsets as follows ov(T (a), T (a′)) =

|T (a)∩T (a′)|
min(|T (a)|,|T (a′)|) . Let τ be the similarity threshold parameter

configured for LSH, i.e., if a and a′ are V–related, given the

714

properties of LHS under MinHash, then they are Jaccard–

similar with a similarity between their respective tsets ≥ τ .

Then,
τ×(|T (a)|+|T (a′)|)

(1+τ)×min(|T (a)|,|T (a′)|) ≤ ov(T (a), T (a′)) ≤ 1, by the

set-theoretic inclusion-exclusion principle.

We construe the discovery of join paths as a graph traversal
problem, and, in order to identify SA–join paths among the

elements of S, we define an SA-join graph, GS = (S, I) over

the entire data lake, where S is the node set and I the edge set

defined using the two SA–joinability conditions from above:

each edge from I connects two SA–joinable nodes Si and Sj .

Given an SA–join graph GS , and a set Sk of k–most

related datasets to a target T , we find the set of SA-join
paths from each Si ∈ Sk to all other vertices in GS (or in a

connected component of GS that contains Si) that are not in

Sk, using Algorithm 3. Specifically, the function traverses GS
depth–first, starting from Si and adds join paths to a globally

accessible set J whenever (i) all path nodes, apart from the

starting node Si, are not in Sk, (ii) the path is not cyclic, and

(iii) there is evidence from at least one index that every node

in the path is related to the target.

Algorithm 3 is called for each Si ∈ Sk and returns a set

of SA–join paths of variable lengths, each of which starts

from Si. Each dataset in such a join path has the potential

to improve target population, either through the addition of

new instance values to an already covered target attribute,

or by populating previously uncovered target attributes. Our

experimental results show that, by taking join opportunities

into account, both the achievable ratio of covered target

attributes and the precision of attributes that are considered

for populating the target are improved.

V. EVALUATION

We firstly evaluate the effectiveness of each relatedness

evidence type and compare them against the aggregated ap-

proach which considers all of them. We then compare the

effectiveness and the efficiency of D3L with that of the

techniques proposed in [10] (referred to as TUS for Table

Union Search) and in [9] (referred to as Aurum). Finally,

we evaluate the impact on target coverage and precision

when, in addition to the top–k, we also consider datasets that

are joinable with tables in the top–k. We use the following

repositories in the experiments:

• Synthetic (∼1.1GB): ∼5,000 tables (used in TUS [10])

synthetically derived from 32 base tables containing Cana-

dian open government data using random projections and

selections on the base tables. We use this repository to

measure comparative effectiveness in terms of precision and

recall. The average answer size is 260 (i.e., the average

number of related tables over 100 randomly picked targets).

This dataset is available from: github.com/RJMillerLab/

table-union-search-benchmark.git.

• Smaller Real (∼600MB): ∼700 tables from real world UK

open government data, with information on domains such as

business, health, transportation, public service, etc. Again,

we use this repository to measure comparative effectiveness.

The average answer size is 110.

• Larger Real (∼12GB): ∼43,000 tables with real world infor-

mation from different UK National Health Service organiza-

tions (webarchive.nationalarchives.gov.uk/search/). We only

use this repository to measure comparative efficiency3.

For Synthetic, the ground truth resulted from recording for

every table, through the derivation procedure, which other

tables are related to it. For Smaller Real a human has manually

recorded, for every table in the lake, which other tables are

related to it, as defined in Definition 1. In both ground truth

instances each table T in the repository is listed with all

its attributes along with every table T ′, along with its own

attributes that are related to some attribute in T . As per

Definition 1, two attributes are considered related in the ground

truth if both contain values drawn from the same domain.

Figure 2 describes the arity, the cardinality and the per-

centage of numerical attributes of the two repositories used in

measuring effectiveness. Arity can have a significant impact

on the top-k ranking, i.e., sources with many similar attributes

tend to be ranked higher by our weighted scheme, and on target

coverage, i.e., the number of attributes related to some target

attribute. Cardinality influences the accuracy of similarity esti-

mation and of join path discovery, i.e., a high overlap between

instance values determines a high probability of collisions

between MinHash hashes. Lastly, numerical attributes are an

important special case, as discussed in Section III-C.

A. Baselines and reported measures

TUS [10] proposes a unionability measuring framework

that builds on top of three types of evidence extracted ex-

clusively from instance–values, aiming to inform decisions

on unionability between datasets from different viewpoints.

TUS uses similar indexing and querying models to D3L and,

therefore, it is a good candidate for a comparative analysis

against D3L w.r.t. both effectiveness and efficiency.

Aurum [9] uses both schema– and instance–level infor-

mation to identify different relationships between attributes

of a data lake. A two–step process profiles and indexes

the data, creating a graph structure that can be used for

key–word search, unionability, or joinability discovery. This

makes Aurum a good candidate for a comparative analysis

against D3L w.r.t. indexing time, effectiveness4, and the added

value of join paths. Conversely, Aurum employs a different

querying model, treating queries as graph traversal problems,

rather than LSH index lookups. This means that the discovery

process in Aurum is not influenced by the same parameters,

e.g., k, as in D3L. This makes an efficiency comparison

between Aurum and D3L w.r.t. search time infeasible.

Given a target T , we report the precision and recall of the

top–k datasets related to T , because, in this experiment, we

are not interested in the, potentially many, data lake members

weakly related to T , but only in the top–k.

3The scripts used to download the two real world data sets are available
from: github.com/alex-bogatu/DataSpiders.git

4For Aurum, we use the certainty ranking strategy described in [9], i.e.,
when attributes are related by more than one evidence type, similarly to TUS,
the maximum similarity score gives the value used in ranking the results.

715

(a) Arity (b) Cardinality (c) Data types

Fig. 2: Synthetic and Smaller Real statistics

For the purposes of computing precision and recall, we

define a true positive, TP : a table from repository R that

is in the top-k tables returned and is related to the target in

the ground truth for R; a false positive, FP : a table from

repository R that is in the top-k tables returned and is not

related to the target in the ground truth for R; and a false

negative, FN : a table from repository R that is related to the

target in the ground truth for R but is not a member of the

top-k tables returned. As usual, precision p = TP/(TP+FP)
and recall r = TP/(TP + FN). In assessing the result (i.e.,

the top-k tables returned), we count the occurrence of a table

in the answer as a true positive if, as per the corresponding

ground truth, at least one, but not necessarily all, attributes of

a table in the solution is related to the target.

In our interpretation of true positives, we consider that fail-

ing to identify one related attribute should not be considered

a sufficient condition for concluding that the table it belongs

to is unrelated to the target: every attribute that can contribute

to populating the target does indeed so contribute. We present

more insight on the coverage of the target in the experiments

pertaining to relatedness as joinability, i.e., Experiments 8–11.

In the results5 below, each point is the average computed by

running D3L (and TUS/Aurum, where pertinent) over 100

randomly selected targets from the respective repository.

B. Individual effectiveness

We first evaluate the effectiveness of data discovery con-

ducted using each D3L evidence type individually. We only

discuss here the results obtained for the Smaller Real repos-

itory; running the experiment on the Synthetic repository

returned similar behaviour in terms of precision and recall.

Experiment 1: Precision and recall (on Smaller Real)
for each type of evidence, as answer size grows. The

purpose of this experiment is to evaluate the effectiveness

of individual evidence types against what is achievable when

using the combined approach. In Figure 3, the low precision

(e.g., [0.10, 0.30]) and recall (e.g., [0.03, 0.43]) achieved using

format suggests that the format representation in itself is not

5Each solution, viz. D3L, TUS, and Aurum, is implemented using LSH
Forest [20] configured with a threshold of 0.7 and a MinHash size of 256.
All experiments have been run on Ubuntu 16.04.1 LTS, on a 3.40 GHz Intel
Core i7-6700 CPU and 16 GB RAM machine.

(a) Precision (b) Recall

Fig. 3: Individual Precision and Recall on Smaller Real

sufficiently discriminating, e.g., there may be many single–

word or number attributes that represent different entities. The

remaining evidence types yield higher precision: at the average

answer size, k = 110, all four evidence types achieve between

0.43 (embeddings) and 0.60 (values) precision, and between

0.49 (embeddings) and 0.70 (values) recall.

Aggregating all five measures, using the aggregation frame-

work described in Section III-D, results in a nearly constant

increase in both measures, compared with the best individual

evidence type: values. For instance, at k = 110, the 60% preci-

sion achieved when using value–based similarity increases to

almost 70% when considering all evidence types. Similarly,

recall increases from 65% when using values to more than

70% when combining all measurements. Overall, there is a

29% increase in the percentage of correct values returned at

k = 110, which explains the increase in both precision and

recall when all relatedness evidence types are considered.

Performing the same experiment for non–numerical at-

tributes only, i.e., DD = 1, resulted in an average decrease

in the aggregated precision and recall of less than 3.5% each.

This suggests that, for this benchmark, most of the discover-

able relatedness relationships between numerical attributes are

already identified by other types of evidence, e.g., N, F.

C. Comparative Effectiveness

In this experiment we report the precision and recall of

D3L, TUS and Aurum, at k (i.e., computed over the top-k
tables returned) on the Synthetic and Smaller Real repositories.

Experiment 2: Precision and recall (on Synthetic) as answer
size grows. Figure 4 shows D3L to be highly precise for

k ∈ [5, 140] and to linearly decrease in the second part of the

interval (down to 0.65 when k = 350). This suggests that most

716

(a) Precision (b) Recall

Fig. 4: Precision and Recall on Synthetic

of the closely related datasets are at the top of the ranking.

Similarly, Aurum is comparatively precise for k ∈ [5, 50] but

degrades linearly for the rest of the interval (down to 0.49
when k = 350). TUS precision suggests that between 20%
and 30% of the retrieved results are false positives consistently

ranked higher than truly related tables.

Overall, D3L performs better that the baselines because the

finer–grained features are more diagnostic of similarity and

the aggregation framework allows each evidence to contribute

to the ranking, therefore reducing the impact of highly–scored

false positives, i.e., a strong score in one dimension is balanced

with a, potentially, lower score in another. By contrast, both

baselines employ a max–score aggregation that only considers

the highest similarity score. In case of TUS, the transforma-

tion of similarity scores into probabilities determines a further

dispersion of true positives across the entire set of results.

Recall rises fast for k ∈ [5, 140] for all approaches and

levels out beyond the average answer size. As k increases,

D3L is able to identify up to 20% more relevant tables com-

pared to TUS, and up to 10% more relevant tables compared

to Aurum. This is because D3L employs a multi–evidence

relatedness discovery that guards against too many misses.

We found that both TUS and Aurum tend to miss relevant

attributes that do not share values with some target attribute.

This is because TUS relies exclusively on instance values

evidence, and Aurum’s name and TF/IDF–based evidence

proves less dependable than content–based evidence.

Experiment 3: Precision and recall (on Smaller Real)
as answer size grows. Figure 5 shows that D3L correctly

identifies highly related datasets, e.g., k ∈ [5, 110], resulting

in precision between 0.2 and 0.4 higher compared to TUS,

and between 0.05 and 0.3 higher compared to Aurum. This

is because the value–based similarity evidence used by TUS
and Aurum expect equality between the instance values of

similar attributes, which is not a characteristic of Smaller Real.
As with the Synthetic benchmark, the aggregation framework

of D3L contributes to the improved precision as well.

Regarding recall, at the average answer size (k = 110),

D3L identifies more than 70% of the related datasets, while

both TUS and Aurum identify around 55%. The performance

gap is wider between D3L and the two baselines for Smaller
Real than for Synthetic across the entire range of k values.

This is because D3L employs a more lenient approach w.r.t.

format representation of values when indexing and comparing

(a) Precision (b) Recall

Fig. 5: Precision and Recall on Smaller Real

attributes. In contrast, TUS and Aurum are more depen-

dent on consistent, clean values than D3L. High levels of

consistency and cleanliness are features of the synthetically

generated tables but are less prevalent in the real tables.

D. Comparative Efficiency

We report performance data for D3L, TUS, and Aurm,

where pertinent. We report the time it takes to create the in-

dexes and the time it takes to compute the top-k solution. Note

that the implementation of TUS in [10] is not publicly avail-

able so we have implemented it ourselves using information

from the paper. For Aurum, we have used the implementation

from github.com/mitdbg/aurum-datadiscovery

Experiment 4: Time to create the indexes as the data
lake size grows. For this experiment, we use the Larger Real
repository to enable the evaluation on a wider range of data

lake sizes. We took five random samples from it at sizes

starting from 2.5K tables and 20K attributes, growing the

repository by 2.5K and 20K, resp., at each step.

The results are shown in Figure 6a. For each system, the

reported values include the times required for pre–processing

the data and for creating all data structures later used in

performing dataset discovery.

Compared to TUS, D3L performed up to 4x better on

small and medium sized lakes, e.g., 7.5K tables, and up

to 6x better on larger ones, e.g., 12.5K. Aurum performs

up to 5x better that D3L for small data lakes, e.g., 2.5K
tables, and comparable with D3L for larger lakes, e.g., 12.5K.

The dominant task in both D3L and TUS is data pre–

processing, e.g., generating summary representations for each

attribute, while in Aurum the dominant task is the creation of

the graph structure used to perform discovery. The common

tasks of generating MinHash/random–projection signatures

and creating LSH indexes have been found to take comparable

amounts of time in all three systems. The main reason for the

poorer performance of TUS seems to lie in its approach to

semantic evidence, for which, in [10], YAGO [32] is used.

Having to map each token of each instance value into a YAGO

knowledge base significantly slows down index construction

and, as the effectiveness results have shown, for perhaps

insufficient return on investment.

Experiment 5 (on Synthetic): Effect on search time as
answer size grows. In the next two experiments we report the

effect of the answer size on the time needed to compute the

717

(a) Indexing time (b) Synthetic search time (c) Smaller real search time

Fig. 6: Indexing and searching performance

answer. The requested size of the answer is the parameter that

most significantly affects the search time for D3L and TUS.

Conversely, the Aurum query model is not impacted by the

size of the result: even when using LSH Forest, the indexes

are queried only once, when the graph structure is created. In

the case of D3L and TUS, every query is an index lookup

task parametrized with a value for k (the answer size).

Figure 6b shows the results for Synthetic. D3L performs

much better than TUS because the reliance on YAGO of

the latter to provide semantic information proves to be a

performance leakage point: recall that, at search time, the same

process of mapping each instance value to YAGO is applied

on the target. Moreover, in TUS, the index is only a block-

ing mechanism, i.e., there remains a significant amount of

computation to be done before the unionability measurements

are obtained. In contrast, D3L does not use knowledge–base

mapping and its distance–based approach means that search

returns plug directly into relatedness measurements.

Although not directly comparable, we also report the av-

erage search time of Aurum obtained for 100 queries on

Synthetic, with a graph structure that accommodates a result

size of at least 260 datasets: 22.42 seconds.

Experiment 6 (on Smaller Real): Effect on search time as
answer size grows. In this experiment we use the Smaller Real
for which we vary the answer size from k = 10 to k = 110
(the average answer size) growing by 20 at each step.

The results shown in Figure 6c tell a different story from

Figure 6b. While D3L still outperforms TUS, the perfor-

mance gap shrinks considerably, particularly for k > 50. This

is because Smaller Real contains a greater ratio of numeric

values (shown in Figure 2c) and fewer tables overall than

Synthetic (700 v. 5000). While D3L spends computation time

in considering numeric attributes, they are completely ignored

by TUS. Thus, the performance leaks that were significant

before do not occur in this case. The flip side, for TUS, is a

loss of about 0.2 in both precision and recall at k = 110.

We also report the average search time of Aurum obtained

for 100 queries on Smaller real, with a graph structure that

accommodates a result size of at least 110: 18.37 seconds.

Experiment 7: Space overhead of the indexes. In Table II we

report the total space occupied by indexes, relative to the data

TABLE II: Space overhead for different repositories.

Synthetic Smaller Real Larger Real (sample)
D3L 69% 33% 58%
TUS 56% 19% 32%

Aurum 55% 20% 29%

lake size, for three repositories: Synthetic (1.1 GB), Smaller
Real (600 MB), and a sample of Larger Real (3 GB). We used

a sample of the Larger Real because building the TUS indexes

for the full 12 GB repository requires more than 20 hours. We

also report the combined space overhead of Aurum’s graph

data structure, profile store, and LSH indexes.
For the Synthetic repository, TUS and Aurum occupy

13% less space compared to D3L. This is because D3L
indexes four types of relatedness evidence, as opposed to

only three in TUS and Aurum. The differences in occupied

space increase for Smaller and Larger Real repositories. This

is because, in addition to creating more indexes, D3L uses

finer–grained features for relatedness discovery, which results

in more related attributes being discovered, which, in turn,

results in more entries (buckets) per index.

E. Impact of join opportunities
We report on the impact of identifying join paths that start

from some table from the top-k. Our stated motivation for

searching join paths is to populate as many target attributes as

possible. As such, we adopt notions of coverage and attribute

precision to compare what is achievable when we take into

account join opportunities and when we do not.
In order to define a measure for coverage, firstly, let Sk =

{S1, . . . Sk} be the k-most related datasets to a given target T .

Given a datasets Si ∈ Sk, let JSi
be the set of all join paths

Jl that start from Si. We denote the arity of T as arity(T)
and the projection from Si of the attributes that are related to

some attribute in T by πrelated(T)(Si).
We define the coverage of Si on T as the ratio of attributes

in T that are related to some attribute in Si:

covSi(T) =
arity(πrelated(T)(Si))

arity(T)
(4)

Note that the coverage of a join path Jl ∈ JSi
can be defined

in a similar way by replacing Si with the result of the join.

718

(a) Target coverage (b) Attribute precision

Fig. 7: Coverage and precision on Synthetic

For the purpose of our comparison though, we are interested

in the combined coverage of all the join path results in JSi
,

since each join path can contribute with new attributes to the

target. As such, we define the coverage of JSi
on T as:

covJSi
(T) =

arity(
⋃

Jl∈JSi

πrelated(T)(Jl))

arity(T)
(5)

From Equations 4 and 5 we average the coverage measures

of all Si ∈ Sk and use the resulting measures, with various

values for k, to show how the target coverage increases when

we consider datasets from join paths.

For the purpose of computing attribute precision for a

dataset Si, we count an alignment between an attribute of

Si and a target attribute as a true positive if, as per the

ground truth, the two attributes are related (as defined by

Definition 1), and as a false positive when they are not related.

Correspondingly, we extend this definition for computing

attribute precision for a set of join paths JSi , and, firstly, we

find the set of all attributes of datasets in JSi
that are aligned

with the same target attribute, and count this set as a true

positive if it contains at least one element that is related with

that target attribute in the ground truth, and as a false positive

otherwise. As before, for both cases, we report the average

attribute precision of all Si in Sk, at various values for k.

In the experiments, we use the Synthetic and Smaller Real
repositories (for which we have the ground truth available).

Our hypothesis is that by considering join paths we can

identify relevant datasets that are not part of the initial ranked

solution, but can improve the target coverage.

We report the target coverage and attribute precision with

(D3L+J /Aurum+J) and without (D3L/Aurum/TUS) aug-

menting the top-k result with joinable datasets. Note that the

graph structure built by Aurum includes PK/FK candidate

relationships, but TUS does not address joinability discovery.

Experiment 8 (on Synthetic): Target coverage as answer
size grows. The D3L + J and Aurum + J curves from

Figure 7a suggests that the two systems are able to cover

most target attributes by following join paths. The sharp

decrease in coverage when join paths are not considered

confirms our hypothesis that join paths allow us to identify

sources potentially far away from the target but relevant for

maximizing its coverage. The superior coverage manifested by

Aurum for k ∈ [5, 80] can be explained by the fact that the

ranking strategy employed in Aurum favours the quantity of

(a) Target coverage (b) Attribute precision

Fig. 8: Coverage and precision on Smaller Real

covered target attributes, over the strength of the relatedness.

In D3L’s case, the aggregation framework splits the ranking

criteria between the number of covered attributes and the

strength of the similarity. TUS seems to return many unrelated

datasets with the given target at the top of the ranking and,

therefore, is less effective in covering it.

Experiment 9 (on Synthetic): Attribute precision as answer
size grows. Figure 7b shows how many of the attributes

used to populate the target are correct in each case. Attribute

precision is between 85% and 100% when populating the

target with the attributes returned by D3L+ J and k < 260,

in contrast with Aurum + j, which decreases more sharply,

i.e., a lower bound of 65% at k = 260. The results are

consistent with the ones reported in Section V-C and are

the consequences of the same characteristics: finer–grained

features that are more diagnostic and multi–evidence similarity

signals considered by D3L(+J). Furthermore, the join paths

in D3L+J are built on more than just uniqueness of values (as

is the case for Aurum + J), i.e., they use subject attributes,

and, therefore, they introduce fewer false positives and lead

to the discovery of more related attributes. As before, TUS
returns more unrelated tables at the top of the ranking than

D3L and Aurm and, therefore, is less precise.

Experiment 10 (on Smaller Real): Target coverage as
answer size grows. Figure 8a shows that both D3L+ J and

Aurum + J achieve considerable improvements in coverage

over their join–unaware variants. The increase is, as expected,

smaller at low k values, e.g. k ∈ [5, 20], because the top of

the ranking already covers the target well. As k increases, the

improvement in coverage becomes more significant, especially

in Aurum′s case. This suggests, once again, that tables that

are related to the target but are not included in the top-k (due

to an index miss, or weak relatedness signals) can be identified

by traversing join paths from some top-k datasets.

The low TUS coverage shown in Figure 8a suggests that

the top-k solution covers only a small fraction of the target

attributes. This is because datasets at the top of the ranking

contain attributes aligned with approx. 25% of target attributes,

while the rest (even as k increases) do not contribute many

additional attributes.

D3L proves significantly better at covering target attributes

than TUS and Aurum for the entire interval of k values. This

is because, as previous experiments showed, D3L retrieves

higher quality datasets (i.e., more related to the target) from the

719

lake. The decrease of the curve as k increases can be explained

by the fact that the measure is an average of individual

coverage values. As k increases, there are more datasets with

small coverage and the overall average decreases.

Experiment 11 (on Smaller Real): Attribute precision as
answer size grows. Figure 8b suggests that only 35% to 45%,

and only 20% to 50% of the target attributes populated by

TUS and Aurum, resp., are correct. This is not surprising

since the dataset–level precision reported in Section V-C

showed that at most 50%, in the case of TUS, and at most

70%, in the case of Aurum, of the retrieved datasets are

indeed relevant for populating the target.

The increased precision of D3L is explained by its ability

to identify attribute relatedness even when the format repre-

sentation of values differs. The difference is preserved when

joinable tables are considered. By including tables from the

join paths in the solution, at k ∈ [50, 170], the attribute

precision increases by up to 0.2. Note that, for D3L + J ,

there is not much increase at the head and tail of the k values

interval, since datasets at the top already cover the target

precisely, while datasets that are joinable with tables far away

from the target provide low quality attributes. Furthermore,

the precision of D3L+J does not descend below the original

precision of D3L, suggesting that most of the attributes

contributed by the former are true positives.

Finally, as in the Synthetic case, the use of more re-

strictive conditions (detailed in Section IV), i.e., the use of

subject attributes, when searching for join paths compared to

Aurum+J , allows D3L+J to cover the target more precisely.

VI. CONCLUSIONS

We have contributed an effective and efficient solution to

the problem of dataset discovery in data lakes. We have used

schema– and instance–based features to construct hash–based

indexes that map the features into a uniform distance space,

making it possible to take hash values similarity as relatedness

measurements and, thereby, saving on computational effort.

In comparison with similar approaches from the state–of–

the–art, we have empirically identified three main advantages

of our proposal: (i) the use of schema and instance–level

fine–grained features that are more effective in identifying

relatedness, especially when similar entities are inconsistently

represented; (ii) the mapping of these features to a uniform

distance space that offers an aggregated view on the notion

of relatedness, to which each type of similarity evidence

contributes; and (iii) the discovery of join paths using LSH

evidence and subject–attributes that leads to an increased and

precise target coverage. These characteristics are decisive in

performing more effective and more efficient dataset discovery,

when compared to TUS, and more effective dataset discovery,

at the expense of efficiency, when compared to Aurum, in

both pragmatically generated and real–world scenarios.

Acknowledgments: Work supported by the VADA Grant of

the UK Engineering and Physical Sciences Research Council.

REFERENCES

[1] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. W. Paton, “Data
wrangling for big data: Challenges and opportunities,” in EDBT, 2016.

[2] M. Koehler, A. Bogatu, C. Civili, N. Konstantinou, E. Abel, A. A. A.
Fernandes, J. A. Keane, L. Libkin, and N. W. Paton, “Data context
informed data wrangling,” in IEEE Big Data, 2017.

[3] N. Konstantinou, M. Koehler, E. Abel, C. Civili, B. Neumayr,
E. Sallinger, A. A. A. Fernandes, G. Gottlob, J. Keane, L. Libkin, and
N. W. Paton, “The VADA architecture for cost-effective data wrangling,”
in SIGMOD, 2017.

[4] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” The VLDB Journal, vol. 10, no. 4, 2001.

[5] A. Bogatu, A. A. A. Fernandes, N. W. Paton, and N. Konstantinou,
“Synthedit: Format transformations by example using edit operations,”
in EDBT, 2019.

[6] G. Mecca, P. Papotti, and S. Raunich, “Core schema mappings,” in
SIGMOD, 2009.

[7] L. Mazilu, N. W. Paton, F. A.A.A., and M. Koehler, “Dynamap: Schema
mapping generation in the wild,” in SSDBM, 2019.

[8] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in STOC, 1998.

[9] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and
M. Stonebraker, “Aurum: A data discovery system,” in ICDE, 2018.

[10] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table union search
on open data,” PVLDB, vol. 11, no. 7, Mar. 2018.

[11] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“Webtables: exploring the power of tables on the web,” PVLDB, 2008.

[12] H. Elmeleegy, J. Madhavan, and A. Y. Halevy, “Harvesting relational
tables from lists on the web,” The VLDB Journal, vol. 2, no. 1, 2009.

[13] O. Lehmberg and C. Bizer, “Stitching web tables for improving matching
quality,” PVLDB, vol. 10, no. 11, 2017.

[14] X. Ling, A. Y. Halevy, F. Wu, and C. Yu, “Synthesizing union tables
from the web,” in IJCAI, 2013.

[15] A. Das Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu, “Finding related tables,” in SIGMOD, 2012.

[16] R. Fernandez, E. Mansour, E. Qahtan, A. Elmagarmid, I. Ilyas, S. Mad-
den, M. Ouzzani, M. Stonebraker, and N. Tang, “Seeping semantics:
Linking datasets using word embeddings for data discovery,” in ICDE,
2018.

[17] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in SoCG, 2004.

[18] A. Broder, “On the resemblance and containment of documents,” in
SEQUENCES, 1997.

[19] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in STOC, 2002.

[20] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes
for similarity search,” in WWW, 2005.

[21] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller, “Lsh ensemble: Internet-
scale domain search,” PVLDB, vol. 9, no. 12, Aug. 2016.

[22] R. Miller, “Open data integration,” PVLDB, vol. 11, no. 12, 2018.
[23] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova, “Data integration

for the relational web,” PVLDB, vol. 2, no. 1, 2009.
[24] I. Terrizzano, P. Schwarz, M. Roth, and J. Colino, “Data wrangling: The

challenging yourney from the wild to the lake,” in CIDR, 2015.
[25] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E.

Whang, “Goods: Organizing google’s datasets,” in SIGMOD, 2016.
[26] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in
NIPS, 2013.

[27] E. Grave, T. Mikolov, A. Joulin, and P. Bojanowski, “Bag of tricks for
efficient text classification,” in EACL, 2017.

[28] W. J. Conover, Practical nonparametric statistics. Wiley, 1999.
[29] P. Venetis, A. Y. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu,

G. Miao, and C. Wu, “Recovering semantics of tables on the web,”
PVLDB, vol. 4, no. 9, Jun. 2011.

[30] C. Hsieh, K. Chang, C. Lin, S. S. Keerthi, and S. Sundararajan, “A dual
coordinate descent method for large-scale linear SVM,” in ICML, 2008.

[31] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann,
“Data profiling with metanome,” PVLDB, vol. 8, no. 12, 2015.

[32] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic
knowledge,” in WWW, 2007.

720

