
Incremental Export of Relational Database Contents into

RDF Graphs
Nikolaos Konstantinou

Hellenic Academic Libraries Link
National Technical University of

Athens
Iroon Polytechniou 9, Zografou

15780, Athens, Greece
+30 210 772 4483

nkons@seab.gr

Dimitris Kouis
Hellenic Academic Libraries Link
National Technical University of

Athens
Iroon Polytechniou 9, Zografou

15780, Athens, Greece
+30 210 772 4487

dimitriskouis@seab.gr

Nikolas Mitrou
School of Electrical and Computer
Engineering, National Technical

University of Athens
Iroon Polytechniou 9, Zografou

15780, Athens, Greece
+30 210 772 1639

mitrou@cs.ntua.gr

ABSTRACT

In addition to tools offering RDF views over databases, a variety

of tools exist that allow exporting database contents into RDF

graphs; tools proven that in many cases demonstrate better

performance than the former. However, in cases when database

contents are exported into RDF, it is not always optimal or even

necessary to dump the whole database contents every time. In this

paper, the problem of incremental generation and storage of the

resulting RDF graph is investigated. An implementation of the

R2RML standard is used in order to express mappings that

associate tuples from the source database to triples in the resulting

RDF graph. Next, a methodology is proposed that enables

incremental generation and storage of an RDF graph based on a

source relational database, and it is evaluated through a set of

performance measurements. Finally, a discussion is presented

regarding the authors’ most important findings and conclusions.

Categories and Subject Descriptors

E.2 [Data Storage Representations]: Linked representations,

H.2.4 [Systems] Relational databases

General Terms

Algorithms, Measurement, Performance, Experimentation.

Keywords

Linked Open Data, Incremental, RDF, Relational Databases,

Mapping, R2RML.

1. INTRODUCTION
Systems that collect, maintain and update information are not

always using triplestores at their backend. Data that result in

triples are typically exported from other, primary sources into

RDF graphs, often relying on systems that have a Relational

Database Management System (RDBMS) at their core, and

maintained by teams of professionals that trust it for mission-

critical tasks.

Moreover, it is understood that experimenting with new

technologies – as the Linked Open Data (LOD) world can be

perceived by people and industries working on less frequently

changing environments – can be a task that requires caution, since

it is often difficult to change established methodologies and

systems, let alone replace by newer ones. Consider, for instance,

the library domain, where a whole living and breathing

information ecosystem is buzzing around bibliographic records,

authorities records, digital object records, e-books, digital articles

etc., where maintenance and update tasks are unremitting. In these

situations, changes in the way data are produced, assured for their

quality and updated affects people’s everyday working activities

and therefore, operating newer technologies side-by-side for a

period of time before migrating to new technologies seems the

only applicable – and sensible – approach.

Therefore, in many cases, the only viable solution is to

maintain triplestores as an alternative delivery channel, in addition

to production systems, a task that becomes increasingly

multifarious and performance-demanding, especially when the

primary information is rapidly changing. This way the operation

of information systems remains intact, while at the same time they

expose seamlessly their data as LOD.

To this direction, several mapping techniques between

relational databases and RDF graphs have been introduced in the

bibliography, among which various tools, languages, and

methodologies. Thus, in order to expose relational database

contents as LOD, several policy choices have to be made, since

several alternative approaches exist in the literature, without any

one-size-fits-all approach [1].

When exporting database contents as RDF, one of the most

important factors to be considered is discussed in [2]: Should

RDF content generation take place in real-time or should database

contents be dumped into RDF asynchronously? In other words,

the question to be answered is whether the RDF view over the

relational database contents should be transient or persistent. Both

approaches constitute acceptable, viable approaches, each with its

own characteristics, its benefits and its drawbacks.

As argued in [2], in contexts where data update is not

frequent, as is the case in digital repositories, real-time SPARQL-

to-SQL conversions are not the optimal approach, despite the

presence of database performance improvement techniques (e.g.

indexes) that would presumably increase performance compared

to plain RDF graphs. When querying, the round-trips to the

database pose an additional burden, while RDF dumps perform

much faster. The performance difference is even more visible,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

WIMS '14, June 02 - 04 2014, Thessaloniki, Greece

Copyright 2014 ACM 978-1-4503-2538-7/14/06…$15.00.

http://dx.doi.org/10.1145/2611040.2611082

especially in cases when SPARQL queries involve many triple

patterns, which, subsequently translated to SQL queries, include

numerous “expensive” JOIN statements. Additionally, it must be

noted that asynchronous RDF dumps of the database, leave

current established practices untouched, by doing the additional

work in extra steps, without replacing existing steps in the

information processing workflow.

The performance optimization problem defined and analyzed

in this paper focuses on providing a persistent RDF view over

relational database contents and, more specifically, the

minimization of the triplestore downtime each time the RDF

export is materialized, which corresponds to the time that is

required until the triplestore contents are replaced/updated by the

new ones, reflecting the changes in the database. In order to do so,

an incremental approach is introduced for the generation and

storage of the RDF graph, as opposed to fully replacing the graph

contents with the latest version each time the RDF dump is

materialized. The problem can be further distinguished into two

sub-problems:

 Sub-problem #1: Incremental transformation. This states that

each time the transformation is executed, not all of the initial

information that lies in the database should be transformed

into RDF, but only the one that changed.

 Sub-problem #2: Incremental storage. This is a problem that

is investigated only when the resulting RDF graph is stored

in a relational database or a Jena TDB (to be briefly analyzed

in Section 3) model. The problem here, regardless to whether

the transformation took place fully or incrementally is about

storing (persisting) to the destination RDF graph only the

triples that were modified and not the whole graph.

RDF views on relational database contents can be

materialized either synchronously (i.e. in real-time), or

asynchronously (ad hoc, as it is often mentioned). We note that,

according to [3], the notion of real-time is tightly coupled with the

concepts of event and response time. An event can be defined as

“any occurrence that results in a change in the sequential flow of

program execution” and the response time as “the time between

the presentation of a set of inputs and the appearance of all the

associated outputs”. Contrarily, in the ad hoc, asynchronous

approach, the user can run the execution command that will dump

the relational database contents into an RDF graph at will.

Given the definitions above, the incremental approach can be

characterized as ad hoc, and not real-time since transformations

are performed asynchronously. Emphasis is given in studying

processing times that each transformation steps requires towards

the RDF graph generation, taking into account parameters such as

the output medium, whether the change is incremental or not, the

total size of the resulting graph, and the percentage of the triples

of the initial graph that were changed.

The paper is structured as follows: Section 2 provides an

overview of the related works in the literature, Section 3

introduces and analyzes the proposed approach, Section 4

describes the measurement environment and parameters, presents

the performance measurements and a discussion over the results

while Section 5 concludes the paper with our most important

observations and future plans to expand on this work.

2. RELATED WORK
Numerous approaches have been proposed in the

bibliography, mainly concerning the creation and maintenance of

mappings between RDF and databases. Mapping relational

databases to RDF or graph databases is a domain where much

work has been conducted and several approaches have been

proposed [4, 5, 6, 7]. Typically, the goal is to describe the

relational database contents using an RDF graph (or an ontology)

in a way that allows queries submitted to the RDF schema to be

answered with data stored in the relational database. Also, for

transporting data residing in Relational Databases into the

Semantic Web, many automated or semi-automated mechanisms

for ontology schemes instantiation have been created [8,9,10, 11].

Related software tools can be broadly divided into two major

categories: the ones that allow real-time translation from relational

database contents into RDF (transient RDF views) and the ones

that allow exports (persistent RDF views).

Many approaches exist where transient RDF views are

offered on top of relational databases, putting effort into

conceiving efficient algorithms that translate SPARQL queries

over the RDF graph in semantically equivalent SQL ones that are

executed over the underlying relational database instance [12, 13].

Evaluation results, such as the ones presented in [14], show that

under certain conditions, some SPARQL-to-SQL rewriting

engines (e.g. D2RQ, a solution introduced in [15] or Virtuoso

RDF Views [16, 17]) perform faster than native triple stores in

query answering, achieving lower query response times. In cases

when this happens, it is mostly attributed to two reasons: The first

one is the maturity and optimization strategies existing in

relational database systems that outperform triple stores, while the

second one is more fundamental and lies in the combination of the

RDF data model and the structure of the (relatively homogenous)

benchmark dataset that was used for providing the results [14].

Query-driven approaches provide access to an RDF graph

that is implied and does not exist in physical form (transient

approach). In this case, the RDF graph is virtual (i.e. partially

instantiated) and is only considered when some appropriate

request is made, usually in the shape of a semantic query. Tools of

this category include Virtuoso [16] and D2RQ. In this category of

approaches, queries using SPARQL are consequently translated

into SQL queries. These systems include D2RQ [13] and the

Virtuoso universal server [16], both of which are approaches that

support RDF Views over relational database contents making it

possible to publish a transient RDF graphs on top of relational

databases.

Asynchronous, ad hoc dumps, performed by a category of

tools that can generate an RDF dump based on a relational

database can be classified according to a number of criteria to a

number of categories [19]. Batch-transformation, or Extract-

Transform-Load (ETL) approaches generate a new RDF graph

from a relational database instance (e.g. [20, 21]) and store

physically in an external storage medium, such as a triplestore.

This approach is called materialized, or persistent [2]. This

approach does not provide or maintain any means of mappings

between the source contents and the output (as in [11]), but

requires a mapping file, with the use of which, it is made possible

to obtain a snapshot of the relational database contents and export

it as an RDF graph. The option of dumping relational database

contents into RDF is also supported by D2RQ (alongside its main

function as an RDF server), Triplify [21], and also the Virtuoso

universal server.

The authors’ previous work, introduced in [20], comprises an

approach that, in contexts where the data are not updated

frequently, performs much faster in RDF-izing relational database

contents, compared to translating SPARQL queries to SQL in

real-time [2]. This approach was used in this paper and was

Parser Generator
Mapping

fileSource database

RDF graph Hard Disk

Target database

TDB

R2RML Parser

Figure 1: Overall architectural overview of the approach.

further modified and enhanced, in order to support incremental

RDF dumps for our evaluation through experimentation.

Less work has been conducted as far as it concerns

incremental RDF generation techniques. In [22], an approach is

introduced for the incremental, rule-based generation of RDF

views over relational data. The paper presents an incremental

maintenance strategy, based on rules, for RDF views defined on

top of relational data. A comparison with our system could not

currently be made as the work presented in [22] is not currently

followed by an implementation that could be evaluated/compared

to ours, it is mentioned however in the authors’ future plans.

Finally, in [23] the AWETO RDF storage system is introduced,

where both querying and incremental updates are supported,

following a hash-based approach in order to perform incremental

updates, an approach that targets RDF storage and not

transformation as in the hereby presented work.

3. PROPOSED APPROACH
The basic information flow in the proposed approach has the

relational database as a starting point and an RDF graph as the

result. The basic components are: the source relational database,

the R2RML Parser tool1 , and the resulting RDF graph. Figure 1

illustrates how this flow in information processing takes place.

First, database contents are parsed into result sets. Then,

according to the mapping file, defined in R2RML [24], the Parser

component generates a set of instructions (i.e. a Java object) for

the Generator component. Subsequently, the Generator

component, based on this set of instructions, instantiates in-

memory the resulting RDF graph. Next, the generated RDF graph

is persisted, which can be an RDF file on the hard disk, another

relational database, tailored to serve RDF data, or TDB, Jena’s

[25] custom implementation of threaded B+Trees2.

While the first two need no further comments, it is

interesting to describe TDB briefly. The TDB (Tuple Data Base)

engine works in tuples, of which triples are a case. Technically, a

dataset backed by TDB is stored in a single directory in the file

system. A dataset comprises of the node table, triple and quad

indexes, and a table with the prefixes. Jena’s implementation of

B+Trees only provides for fixed length key and fixed length

value, and there is no use of the value part in triple indexes.

Because of the custom implementation, it performs faster than the

relational database backend, allowing the implementation to scale

much more, as it is demonstrated in the performance

measurements in Section 5.

In order to produce RDF content incrementally, we can

distinguish the following two cases:

 Incremental transformation: This is possible when the

resulting RDF graph is persisted on the hard disk. In this

1 The R2RML Parser tool:

http://www.w3.org/2001/sw/wiki/R2RML_Parser

2 TDB Architecture:

http://jena.apache.org/documentation/tdb/architecture.html

approach, the algorithm that produces the resulting graph

does not run over the whole mapping document declarations.

This is realized by consulting the log file with the output of a

previous run of the algorithm, and performing

transformations only on the changed data subset. In this case,

the resulting RDF graph file is erased and rewritten on the

hard disk.

 Incremental storage: This is an approach that is only possible

in cases when the resulting graph is persisted in a relational

database or using Jena’s TDB implementation. Only when

the output medium allows additions/deletions/modifications

at the level of triples, it is made possible to store the changes

without rewriting the whole graph.

In the course of the experiments, time in each execution is

divided in the following consecutive time parts. The time

measured in the experiments is the sum of t1, t2, and t3:

 t1: The mapping document is parsed

 t2: The Jena model is generated in-memory. This is

considered to be a discrete step since, at least in theory, upon

termination of this step, the model is available to APIs that

could as well belong to third party applications.

 t3: The model is dumped to the destination medium.

 t4: The results are logged. In the incremental RDF generation

case, the log file includes writing the “reified model”

 t5: The program is terminated

In the scope of the hereby presented work, the term reified

model is introduced, in analogy to the term reified statement.

Reification in RDF is the ability to treat an RDF statement as an

RDF resource, and hence to make assertions about that statement.

The term reified model denotes a model whose statements are all

reified, i.e. a model that contains only reified statements. This was

made in order to store information about every triple regarding the

mapping definition that produced it.

In Figure 2, a materialized example is shown of how

standard RDF triples are logged as reified statements, followed by

a provenance note. The reified statement in the example is

annotated with the mapping declaration that led to its generation,

i.e. the triples map definition map:persons.

The term triples map is also a key term to this work: A

triples map specifies a rule for translating each row of a logical

table to zero or more RDF triples3. A logical table is a tabular

SQL query result that is to be mapped to RDF triples. Hence,

execution of a triples map generates the triples that originate from

a specific dataset, i.e. a logical table. Figure 3 illustrates an

example of a triples map that is assigned the qname

map:persons.

3 Definition of a Triples Map: http://www.w3.org/TR/r2rml/#dfn-

triples-map

<http://data.example.org/repository/person/1>

foaf:name "John Smith" .

becomes

[] a rdf:Statement ;

 rdf:subject

<http://data.example.org/repository/person/1> ;

 rdf:predicate foaf:name ;

 rdf:object "John Smith" ;

 dc:source map:persons .

Figure 2: Annotated reified statement example.

In the incremental RDF triple generation, the basic challenge

lies in discovering which mapping definitions were added,

deleted, and/or modified, and also which database tuples were

added, deleted, and/or modified since the last time the incremental

RDF generation took place, and perform the mapping only for this

altered subset. This means that it is required, for each generated

triple, to store annotation information regarding its provenance.

Thus is the core idea in the case of incremental transformation.

Ideally, the exact database cell and mapping definition that

led to the specific triple generation should be stored. However,

using R2RML, the atom of the mapping definition becomes the

triples map. Therefore, when annotating a generated triple with

the mapping definition that generated it, we can inspect at

subsequent executions both the triples map elements (e.g. subject

template), as well as the dataset from the database, in order to

assert whether the data are changed or not.

map:persons

 rr:logicalTable [rr:tableName '"eperson"';];

 rr:subjectMap [

 rr:template

'http://data.example.org/repository/person/{"epers

on_id"}';

 rr:class foaf:Person;];

 rr:predicateObjectMap [

 rr:predicate foaf:name;

 rr:objectMap [rr:template '{"firstname"}

{"lastname"}' ;

 rr:termType rr:Literal;]].

Figure 3. Triples maps are the atoms of the mapping

document.

Consider, for instance, the triples map in Figure 3. In this

case, when one of the source tuples change (i.e. the table

“eperson” appears to be modified), then the whole triples map

definition will be executed. This execution would also be

triggered in case the triples map definition had any changes.

In order to detect changes in the source dataset or the

mapping definition itself, the proposed approach utilizes hashes

for the information of interest. The algorithm that performs the

incremental RDF graph generation is presented in Algorithm 1.

The hashes were produced using the MD5 cryptographic hash

function.

The basic concepts involved here are the mapping document,

the triples map, and the logical table. A mapping document is an

RDF document in R2ML containing triples maps, containing

instructions about how to convert the source relational database

contents into RDF. Each of these triples maps, similar to the one

in Figure 3, contains a logical table that, in its turn, contains an

SQL select query, which has a respective select query result set,

with the tuples retrieved from the database. As a result, the hashes

that are stored in the log file include: the source logical table SQL

SELECT query, the respective dataset that is retrieved from the

source database, and the whole triples map definition itself.

Input: RDF mapping document in R2RML

Output: RDF triples

for triples map ∈ mapping document

 if select query hash != logged select query

hash or

 resultset hash != logged resultset hash or

 triples map hash != logged triples map hash

 then

 produce triples, by executing mapping

instructions for triples map

 end if

end for

write MD5(select query) to log

write MD5(select query resultset) to log

write MD5(triples map) to log

Algorithm 1: In incremental RDF generation, mapping

definitions will be processed only when changes are detected in

the queries, their result sets, or the mapping definitions

themselves.

In order to create a unique hash over a result set, and

subsequently detect whether changes were performed on it or not,

Algorithm 2 was devised. It is noteworthy to mention that in order

to ensure that the order of the results would be the same, in cases

when an ORDER BY construct was not present, it was added

programmatically, according to the first field in the table. If the

query was ordered beforehand, it was left intact.

Input: a result set result set

Output: string hash

for row ∈ result set do

 for column ∈ row do

 hash = concatenate(hash, column as string)

 end

 hash = MD5(hash)

end

Algorithm 2. Hash a result set from the source relational

database.

Next, in order to verify that no changes were performed on

the triples map definitions themselves, they were hashed in order

to allow subsequent checks for modifications. For each triples

map definition, the input string for the hash contained: the SQL

selection query, the subject template, the Class URIs of which the

subject was an instance, the predicate-object map templates and/or

columns, the predicates, and finally, the parent triples map, if

present.

In the case of incremental storage, as the output is persisted

at a relational database-backed triplestore or at a Jena TDB, no

hashes are needed. Instead, the resulting RDF graph is generated

and updates to the existing RDF graph are translated into

commands to the dataset (such as SQL DELETE and INSERT).

The algorithm in this case is different, as shown in Algorithm 3.

For the interested reader, the source code of the

implementation that served as the basis for our experiments is

available online at github.com/nkons/r2rml-parser.

4. MEASUREMENTS
This Section provides information regarding the environment

setup, the evaluation results and a discussion over our findings.

4.1 Measurements Setup
Using the popular open-source institutional repository

software solution DSpace (dspace.org), seven repositories were

constructed and their relational database backends were populated

with synthetic data, comprising 1k, 5k, 10k, 50k, 100k, 500k, 1m

items (i.e. rows in the item table), respectively. Several mapping

files were considered for our tests. The first set of mapping

Input: RDF model new model, RDF model existing

model

Output: An updated RDF model

for triple ∈ new model

 if triple ∉ existing model then

 add triple to list of statements

 to remove

 end

end

for triple ∉ existing model

 add triple to list of statements to add

end

remove list of statements to remove from existing

model

add list of statements to add to existing model

return existing model

Algorithm 3. Incrementally dump the resulting model to a

relational database or a Jena TDB backend.

definitions, targeting the contents of the repository, comprised

“complicated” SQL queries (including JOINs among 4 tables), as

the one presented below:
SELECT i.item_id AS item_id, mv.text_value AS

text_value

FROM item AS i, metadatavalue AS mv,

metadataschemaregistry

AS msr, metadatafieldregistry AS mfr WHERE

msr.metadata_schema_id=mfr.metadata_schema_id AND

mfr.metadata_field_id=mv.metadata_field_id AND

mv.text_value is not null AND

i.item_id=mv.item_id AND

msr.namespace='http://dublincore.org/documents/dcm

i-terms/'

AND mfr.element='coverage'

AND mfr.qualifier='spatial'

This query was later simplified, by removing one of the

JOIN conditions and two of the WHERE conditions, thus reducing

its complexity and becoming:
SELECT i.item_id AS item_id, mv.text_value AS

text_value

FROM item AS i, metadatavalue AS mv,

metadatafieldregistry AS mfr WHERE

mfr.metadata_field_id=mv.metadata_field_id AND

i.item_id=mv.item_id AND

mfr.element='coverage' AND

mfr.qualifier='spatial'

Another, even simpler mapping definition was also

considered, comprising a simple query without any JOIN

conditions, as follows:
SELECT "language", "netid", "phone",

"sub_frequency","last_active", "self_registered",

"require_certificate", "can_log_in", "lastname",

"firstname", "digest_algorithm", "salt",

"password", "email", "eperson_id"

FROM "eperson" ORDER BY "language"

Measurements were performed on machine with a dual-core

2GHz processor, with 4096MB RAM and 40GB hard disk. The

machine was running Ubuntu Linux, Oracle Java 1.7.0_45,

Postgresql version 9.1.9, and Mysql x86_64 version 5.5.32. We

note that several experiments were conducted initially using the

OpenJDK 64-Bit Java version, which led, however, to frequent

Out of Memory issues, forcing us to switch to Oracle’s

implementation.

It has to be noted, that, in order to deal with database caching

effects, the queries were run several times, in order to get the

system “warmed up”, prior to performing our measurements.

4.2 Measurements Results
In Figures 4 to 9, the y-axis measures execution time in seconds,

while the letters in the x-axis correspond to the following cases: a:

non-incremental mapping transformation, b: incremental, for the

initial time, c, d, e, f, g, h: incremental transformation, where the

ratio of the changed triples over the total amount of triples in the

resulting graph is 0, 1/12, 1/4, 1/2, 3/4, and 1, respectively.

4.2.1 Exporting on the hard disk
The first set of performance measurements was realized using the

hard disk as the output storage medium. In Figure 4, the triples

maps contained simple SQL queries (the third query in Section

4.1). We note that the time needed for the initial export of the

database contents into an RDF graph increases as the number of

the triples in the resulting model increases. Incremental dumps

take more time than non-incremental, since the reified model also

has to be created and stored, as analyzed in Section 3, a sacrifice

in performance that pays off in subsequent executions. Similar

results were obtained for mappings containing simple SQL

queries resulting graphs containing up to 300k triples. Similar

results are observed in Figure 5, regarding the more complicated

SQL queries (the first query in Section 4.1), the difference

however is not as great as in the previous case.

Next, in Figure 6, the same tests were performed in the

complicated SQL query case, showing that the results here were

very good. As Figure 6 shows, the time required to dump database

contents non-incrementally was less than the initial incremental

dump. Consecutive dumps, however, took less than the initial

time, practically no time when no changes were detected in the

source database, and performing faster even in the case when the

percentage of the initial data that were changed reached to 75%.

Only when the vast majority of the data was changed, did the

incremental dump take longer than the non-incremental one.

Next, we considered the effect that the query simplification would

have on the result. In Figure 7, we demonstrate a set of

measurements with all parameters the same, except for the query

itself, which was similar to the second query in Section 4.1. Query

simplification did have an impact on the resulting time, but a

rather small one.

In order to verify how the number of triples of the resulting RDF

graph affects the performance, we added 6 triples map statements,

similar to the existing ones, thus producing 6 times as much

triples. This allowed us to scale up to 3 million triples, the

behavior however remained the same.

4.2.2 Exporting on a relational database
Τhe next set of measurements was performed using the relational

database as the output medium. Our experiments revealed that

database behavior compared to hard disk behavior gave

dissatisfactory performance times at all cases, regardless to the

number of the triples in the resulting graph. Comparative

performance is illustrated in Figure 8 and Figure 9, showing that

the relational database as a backend performed more poorly than

the hard disk or TDB, which justifies Jena developers’ decision to

drop support for a relational database in favor of TDB as an RDF

backend.

4.2.3 Exporting on Jena TDB
The next set of experiments included incremental transformation

and storage using TDB. As the experiments showed, its behavior

is similar to the one of the database backend, but with a much

faster performance, at all sizes of triples in the resulting graph.

For instance, as Figure 8 shows, the results for the complicated

mappings, in cases when each of the initial SQL queries returns

10k rows using TDB is much faster than using a relational

database. Still, however, storing on the hard disk is the fastest

solution. The next figure, Figure 9, compares results in the

database and results in TDB. In this case, however, it was not

possible to obtain result output on the hard disk, or on the

relational database in cases where changes in the initial model had

taken place, because of out-of-memory errors.

0

10

20

30

40

3000 15000 30000 150000 300000
result model triples

non-incremental

incremental

Figure 4. Time needed for the initial export of database

contents into an RDF file using simple queries in mappings.

0

200

400

600

1000 5000 10000
source database rows

non-ncremental

incemental

Figure 5. Time needed for the initial export of database

contents into an RDF file, using complicated queries in

mappings.

0

200

400

600

a b c d e f g h

1000 items

5000 items

10000 items

Figure 6. Incremental dumps in the case of complicated

queries outperform non-incremental dumps for changes on

approximately 3/4 of the data.

0

100

200

300

a b c d e f g h

complicated mappings

simpler mappings

Figure 7. Incremental dumps it the case of complicated

mapping queries (JOINs among 4 tables) and simplified

queries (JOINs among 3 tables) with the same results.

0

200

400

600

800

1000

a b c d e f g h

RDF file database jena TDB

Figure 8. Hard disk, database, and Jena’s TDB as the output

medium. Complicated mappings, 10k items in the source

database, approx. 180k triples in the resulting model.

0

2000

4000

6000

8000

b c d e f g h

database jena TDB

Figure 9. Database vs TDB behavior: Complicated mappings,

100k items in the source database, approx. 1.8 million triples

in the resulting model.

4.3 Discussion
First, it has to be noted that logging the provenance of each

triple on the hard disk has a great impact on the size required to

store the logged output. Logging, which takes five times as much

space as the result RDF model, improves performance for small to

average datasets up to several hundreds of thousands of triples.

The upper bound that will be defined by the system’s RAM will

have to contain the logged reified model. Therefore, models that

will be produced will not be able to scale as much. For larger

models, however, TDB is preferred, mostly because of the

constraints in terms of memory, imposed by the logging

mechanism. Thus, while persisting the final model into a database

or TDB takes longer than outputting it to the hard disk, this does

not raise memory usage to the level of throwing out-of-memory

exceptions, allowing the result to scale more. In our experiments,

the TDB-backed triplestore scaled to 1.8 million triples. Of

course, TDB scales more, but for our measurements no more tests

were needed to demonstrate the approach’s behavior according to

the storage mechanism.

The fact that the consecutive executions take less time than

the initial time is largely due to the fact that the unchanged result

graph subsets are not re-generated; only the respective SQL

queries are executed but the queries’ results are not iterated upon

in order to produce triples. Moreover, relying upon the logged

hashes of previous executions allows the result to be compared to

the previous one (previous dump) without having to load both

models in memory, enabling further scaling of the approach.

Notably, the RDF serialization format affected performance.

Several serializations, such as RDF/XML or TTL try to pretty-

print the result, consuming extra resources. Because of this, the

serialization format that was adopted in our tests, in the cases

when the resulting RDF had to be output to hard disk – also in

creating the reified model – the “N-TRIPLES” syntax was used.

It has to be noted that, given the fact that reification is being

reconsidered in RDF 1.1 semantics, as named graphs could

support the use cases of reification without requiring a data

transform, an alternative to the hereby proposed approach would

be to replace reified triples with named graphs, each one

containing a statement, and allowing properties to be asserted on

it.

Also, since there are various tools that allow direct,

synchronous RDB2RF mappings, one could argue whether the

whole approach is too complex and not worth the implementation

overhead. However, the task of exposing database contents as

RDF could be considered similar to the task of maintaining search

indexes next to text content: data freshness can be sacrificed in

order to obtain much faster results [2].

Although this approach could be followed in many domains,

it finds ideal application in cases when data are not updated to a

significant amount often (e.g. daily), for instance in the

bibliographic domain [20]. In these cases, when freshness is not

crucial and/or selection queries over the contents are more

frequent than the updates, what our approach succeeds in, is a

lower downtime of the system that hosts the generated RDF graph

and serves query-answering.

Once the RDF dump is exported, a software system could

operate completely based on the semantically enriched

information. This approach could be materialized using for

instance Jena’s Fuseki SPARQL server, the Sesame framework

(www.openrdf.org), Virtuoso, or even native RDF support that

can be found in modern RDBMS’s such as Oracle. Adoption of

such approaches enables the custom implementation of systems

that allow accessing and operating on the RDF graph, after

hosting it on a triplestore server. Materialization of the RDF

dumps could in general be part of larger systems using a push or a

pull approach to propagate the changes from the database to the

triplestore.

Also noteworthy is the fact that still, exporting data as RDF

covers half of the requirements that have to be met before

publishing datasets as RDF. The other half of the problem

concerns the semantics that are infused in the data: The hereby

introduced methodology guarantees only the syntactic validity of

the result, without any checks on the semantics of the target RDF

graph. Meanwhile, it has to be underlined that caution is required

in producing de-referenceable URIs. Mistakes can easily go

unnoticed, even if syntactically all is correct.

5. CONCLUSIONS AND FUTURE WORK
Overall, this paper’s contribution is a study of the

incremental RDF generation and storage problem, in addition to

proposing an approach and assessing its performance after

modifying several problem parameters. Our measurements

indicate that the proposed approach performs optimally when the

triples mappings contain complicated SQL queries, and the

resulting RDF graph is persisted on the hard disk. In these cases,

despite the increase in the time required for the initial

(incremental) dump, subsequent dumps are performed much

faster, especially in cases when the changes affect less than the

half of the initial content. However, for graphs containing millions

of triples, storing in TDB is the optimal solution, since storing in

the hard disk was limited by the physical memory and storing in

the relational database performed much worse. During our tests

we were struggling with out-of-memory errors, since, in

incrementally generating RDF, both the resulting model and the

reified had to be loaded in-memory before outputting to the target

medium.

Several directions exist towards which this work could be

expanded. These could include the investigation of two-way

updates: in the same manner in which updates in the database are

reflected on the triplestore, updates on the triplestore could be

sent back to the database. This could be made possible by keeping

the source mapping definition at the target, as annotation on the

reified statement. Additional steps that could be followed in order

to expand this work could include consideration of RDF (1.1-

compatible) datasets in the mapping result, each one originating

from a different triples map definition. Future work could also

include further studying the impact of the SQL complexity on

generating the result. In order to study this, the total time needed

to execute the SQL queries that retrieve the data from the source

database could be measured. Last, statement annotations to

include other annotations as well, e.g. geo-tagging, timestamps,

etc., and not only mapping definition provenance, thus allowing

incremental RDF generation in other scenarios, in the same

manner.

6. ACKNOWLEDGMENTS
This research has been co-financed by the European Union

(European Social Fund - ESF) and Greek national funds through

the Operational Program "Education and Lifelong Learning" of

the National Strategic Reference Framework (NSRF).

7. REFERENCES
[1] Villazon-Terrazas, B., Vila-Suero, D., Garijo, D., Vilches-

Blazquez, L.M., Poveda-Villalon, M., Mora, J., Corcho, O.,

Gomez-Perez, A. 2012. Publishing Linked Data - There is no

One-Size-Fits-All Formula. In Proceedings of the European

Data Forum

[2] Konstantinou, N, Spanos, D.E., Mitrou, N. 2013. Transient

and Persistent RDF Views over Relational Databases in the

Context of Digital Repositories. In Proceedings of the 7th

Metadata and Semantics Research Conference (MTSR'13),

Thessaloniki, Greece

[3] Dougherty, E., Laplante, P. 1995. Introduction to Real-Time

Imaging, chapter What is Real-Time Processing?, pp. 1-9.

Wiley-IEEE Press

[4] Sahoo, S., Halb, W., Hellmann, S., Idehen, K., Thibodeau,

T., Auer, S., Sequeda, J., Ezzat, A. 2009. A Survey of

Current Approaches for Mapping of Relational Databases to

RDF. Available at

http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_Surv

eyReport.pdf, accessed on February 28th 2014

[5] Konstantinou, N., Spanos, D.E., Mitrou, N. 2008. Ontology

and Database Mapping: A Survey of Current

Implementations and Future Directions. In J. Web

Engineering, 7, 1, 1–24

[6] Bakkas, J., Bahaj, M. 2013. Generating of RDF graph from a

relational database using Jena API. International Journal of

Engineering and Technology, 5, 2, 1970–1975

[7] De Virgilio, R., Maccioni, A., Torlone, R. 2013. Converting

Relational to Graph Databases. In First International

Workshop on Graph Data Management Experiences and

Systems (GRADES ’13), pp. 1–6, New York, New York,

USA, ACM Press

[8] Arenas, M., Bertails, A., Prud'hommeaux, E., Sequeda, J.

2012. A Direct Mapping of Relational Data to RDF. W3C

Recommendation. Available online at

http://www.w3.org/TR/rdb-direct-mapping/

[9] Sequeda, J., Arenas, M., Miranker, D. 2012. On Directly

Mapping Relational Databases to RDF and OWL. In

Proceedings of the 21st World Wide Web Conference, Lyon,

France

[10] Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.

2013. Ontology-Based Data Access: Ontop of Databases. In

Proceedings of the 12th International Semantic Web

Conference (ISWC’13), Sydney, Australia

[11] Vavliakis, K. N., Grollios, T. K., Mitkas, P. A. 2013.

RDOTE – Publishing Relational Databases into the Semantic

Web. In Journal of Systems and Software, 86, 1, 89–99

[12] Chebotko, A., Lu, S., and Fotouhi, F. 2009. Semantics

Preserving SPARQL-to-SQL Translation. In Data &

Knowledge Engineering, 68, 10, 973–1000

[13] Cyganiak, R. 2005. A Relational Algebra for SPARQL,

Technical Report HPL 2005-170

[14] Bizer, C., Schultz, A. 2009. The Berlin SPARQL

Benchmark. In International Journal On Semantic Web and

Information Systems, 5, 2, 1–24

[15] Bizer, C., Cyganiak, R. 2006. D2R Server - Publishing

Relational Databases on the Semantic Web. In Proceedings

of the 5th International Semantic Web Conference

[16] Erling, O., Mikhailov, I. 2007. RDF support in the Virtuoso

DBMS. Proceedings of the 1st Conference on Social

Semantic Web, Leipzig, Germany, 59–68

[17] Blakeley, C. 2007. Virtuoso RDF Views Getting Started

Guide. Available online at

http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virt

uoso_SQL_to_RDF_Mapping.pdf accessed on February

28th 2014

[18] Bizer, C., Seaborne, A. 2004. D2RQ—Treating non-RDF

databases as virtual RDF graphs. In Proceedings of the 3rd

International Semantic Web Conference, Hiroshima, Japan

[19] Spanos, D.-E., Stavrou, P., Mitrou, N. 2012. Bringing

Relational Databases into the Semantic Web: A Survey. In

Semantic Web Journal, 3, 2, 169-209

[20] Konstantinou, N., Spanos, D.-E., Houssos, N., Mitrou, N.

2014. Exposing Scholarly Information as Linked Open Data:

RDFizing DSpace contents. In The Electronic Library, in

press

[21] Auer, S, Dietzold, S., Lehmann, J., Hellmann, S., Aumueller,

D. 2009. Triplify – Light-Weight Linked Data Publication

from Relational Databases. In Proceedings of the 18th

international conference on World Wide Web, New York,

NY, USA, 621–630

[22] Vidal, V. M. P., Casanova, M. A., Cardoso, D. S. 2013.

Incremental Maintenance of RDF Views of Relational Data.

In On the Move to Meaningful Internet Systems (OTM 2013

Conferences), Lecture Notes in Computer Science, Volume

8185, 572–587

[23] Pu, X., Wang, J., Luo, P., Wang, M. 2011. AWETO:

Efficient Incremental Update and Querying in RDF Storage

System. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management

(CIKM ’11), New York, New York, USA

[24] Das, S., Sundara, S., Cyganiak, R. 2012. R2RML: RDB to

RDF Mapping Language. W3C Recommendation. Available

online at http://www.w3.org/TR/r2rml/, accessed on

February 28th 2014

[25] Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne,

A., Wilkinson, K. 2004. Jena: Implementing the Semantic

Web Recommendations. In Proceedings of the 13th World

Wide Web Conference, New York, New York, USA

