
Characterising the Quality of Behaviour
Driven Development Specifications

Leonard Peter Binamungu(B), Suzanne M. Embury,
and Nikolaos Konstantinou

Department of Computer Science, The University of Manchester,
Oxford Road, Manchester M13 9PL, UK

{leonardpeter.binamungu,suzanne.m.embury,
nikolaos.konstantinou}@manchester.ac.uk

Abstract. Behaviour Driven Development (BDD) is an agile testing
technique that enables software requirements to be specified as example
interactions with the system, using structured natural language. While
(in theory) being readable by non-technical stakeholders, the examples
can also be executed against the code base to identify behaviours that
are not yet correctly implemented. Writing good BDD suites, however, is
challenging. A typical suite can contain hundreds of individual scenarios,
that must correctly specify the system as a whole as well as individually.
Despite much discussion amongst practitioners and in the blogosphere, as
yet no formal definition of what makes for a high quality BDD suite has
been given. To shed light on this, we surveyed BDD practitioners, asking
for their opinions on the quality criteria that are important for BDD
suites. We proposed, and asked for opinions on, four quality principles,
and gave practitioners the option to add more principles of their own.
This paper reports on the results of the survey, and presents an approach
to defining BDD suite quality.

Keywords: Behaviour driven development · Test suite quality · Test
suite quality assessment

1 Introduction

Behaviour Driven Development (BDD) [14] enables software requirements to
be given as a collection of examples (usually referred to as scenarios) that use
structured natural language to describe how users will interact with the System
Under Test (SUT). A typical BDD suite can contain hundreds of individual
scenarios [1], organised as several feature files. Listing 1 shows a sample scenario
from a feature that specifies customer interactions with an ATM.

Listing 1. Sample scenario from an ATM feature

Given my account i s in c r e d i t by $100
When I r eque s t withdrawal o f $20
Then $20 i s d i spensed
And my balance i s $80

c© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 87–102, 2020.
https://doi.org/10.1007/978-3-030-49392-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_6

88 L. P. Binamungu et al.

Despite their natural language form, BDD scenarios can be linked to the SUT
through glue code, allowing them to be executed. This turns the specification
into a living document, in which failing scenarios indicate features that are not
yet fully or correctly implemented. The following is an example of Java glue code
for the second step in the scenario in Listing 1:

@When("I request withdrawal of \$(\d+)$")
public void request_withdrawal_of(double amt) {

account.withdraw(amt, teller);
}

The annotation for the method contains a regular expression that is matched
against each scenario step as it is executed. When a method is found with a
matching annotation, it is executed, with the values extracted from the capture
groups passed as the parameter values. Literature has reported both the benefits
of using BDD and the challenges that software teams face when using BDD (e.g.
[1,13]).

BDD approaches fit well with other agile practices for requirements gather-
ing and documentation, with BDD features mapping naturally to user stories
and the individual scenarios mapping (though more loosely) to the conditions
of satisfaction sometimes documented on user story cards as the confirmation
element of the story. The fact that BDD scenarios are expressed using customer
languages means that they can (in theory, at least) be read and understood by
non-technical project stakeholders, and compared with their knowledge of the
domain. BDD is thus typically characterised as a customer-facing form of testing,
that can be undertaken from the earliest stages of the project, once the first user
stories have been identified, and that delivers value right through development
and (in a regression testing role) the operational lifetime of the software.

Writing a high quality BDD suite is important. BDD suites can quickly grow
to include hundreds or even thousands of individual scenarios [1]. The suite
must specify the correct behaviour as a whole, as well as through the individual
scenarios. For the long term correctness and extensibility of the system, it is
important that the BDD suite be written to a high standard. BDD suite quality
has been heavily discussed amongst practitioners and in the blogosphere, and
is beginning to be considered by the software engineering research community
[15–17] but no formal notion of BDD suite quality has been given that can assess
individual scenarios and their relation to the rest of the suite.

In this paper, we present the results of a survey of BDD practitioners’ views
about BDD suite quality. To give structure and precision to the results, we
proposed four principles of BDD suite quality, and asked respondents to give their
level of agreement with them. We also asked respondents to describe additional
quality principles that they thought were important, and that weren’t covered
by the proposed principles. All the four principles received support, with at
least 75% of respondents voting in support of each one, though all of them also
received a number of dissenting votes. Respondents also stressed the importance
of writing scenarios in way that promotes reuse within BDD, but put most
emphasis on readability and clarity of the resulting specification.

Quality of BDD Specifications 89

This paper makes three contributions:

1. BDD Suite Quality Principles: We propose four principles describing
features expected of a high quality BDD specification.

2. Practitioner Support for the BDD Suite Quality Principles: We
report the results of a survey of practitioner support for the BDD suite quality
principles.

3. Other BDD Suite Quality Aspects: We report about other quality
aspects of BDD suites, from which further quality principles can be devel-
oped.

The rest of the paper is structured as follows: Sect. 2 surveys related work
on test suite quality; Sect. 3 presents the approach we used to obtain quality
principles, and the quality principles themselves; Sect. 4 presents practitioners’
opinions about the proposed principles; and Sect. 5 concludes the paper and
highlights future research directions.

2 Related Work

In this section, we first explore how quality is characterised in automated test
suites more generally, to see whether these notions of quality can inform the
definition of quality for BDD. After that, we review the literature on BDD
quality specifically.

Assessing the quality of tests and requirements: Tengeri et al. [21] devised
a method for test suite improvement based on test coverage proportions. To use
the method, an improvement goal is first set (e.g removing duplicate test cases,
improving coverage of some parts of code, etc.). Then a granularity of focus is
chosen–coarse (e.g. functional level) or fine (e.g. statement level). Various metrics
are then computed based on coverage data gathered during test execution, which
are then used to inform the process of updating tests and code.

Palomba et al. [18] found that test cohesion and test coupling are impor-
tant criteria for increasing the quality of automatically generated test cases, and
included these criteria in their algorithm for search-based test case generation.
Meszaros [12] defines test cohesion and coupling as follows. Test cohesion refers
to the simplicity of a test case–a highly cohesive test case should not be involved
in the verification of a lot of functionality. Test coupling, on the other hand,
measures the extent to which tests overlap with each other. To be easily main-
tainable, tests should have low cohesion and coupling. Improvement in quality
of automatically generated test cases was observed when the two criteria were
incorporated into an algorithm for automatic test case generation [7].

Daka et al. [5] used human judgement to develop a model for assessing the
readability of unit tests, and then applied this model to generate readable unit
tests. Crowdsourcing was used to rate the readability of tests on a five point
scale. After that, 24 structural, complexity, and code density unit test features
were selected and used to build the model. When compared with the crowd-
sourced readability results, the model was found to be in agreement by 89%.

90 L. P. Binamungu et al.

Moreover, using the model to augment automatic generation of unit tests, it
was found that more readable unit tests were generated, and the speed at which
humans could answer questions about maintenance increased by 14% without
losing accuracy.

There have been a small number of attempts to assess the quality of natural
language tests and requirements through the notion of smells. Examples are the
work of Hauptmann et al. [9] in which a set of smells in manual natural language
tests was proposed, along with ways to detect them, and the work of Femmer
et al. [6] in which nine smells in natural language requirements (and methods
for their detection) were proposed.

Assessing the quality of BDD suites: Cochran et al. proposed a tool to
detect smells in BDD suites [4]. Their work is similar to ours in a sense that
it is also about the quality of BDD feature suites. However, the tool does not
provide a mechanism to assess the quality of a scenario with respect to all other
scenarios in a feature suite.

To the best of our knowledge, the work of Oliveira et al. [15–17] is the
only published work that focuses on quality in BDD specifications. Specifically,
Oliveira et al. suggested that a good BDD scenario should be essential, focused,
singular, clear, complete, unique, ubiquitous, and integrous [15–17]. However,
these attributes define, in general terms, the characteristics expected of a good
scenario, but are not precise enough to facilitate the assessment of the quality
of one scenario in relation to all other scenarios in a suite.

3 BDD Suite Quality Principles

In this section, we first present the process used to produce the principles, and
then we describe the four principles in their general form.

3.1 Aspects of Quality in BDD Specifications

To understand what constitutes good quality in BDD suites, we first searched
the scientific literature for attempts to define quality in BDD specifications. This
gave us only the work of Oliveira et al. which suggested that good BDD scenar-
ios should be essential, focused, singular, clear, complete, unique, ubiquitous, and
integrous [15–17]. However, these attributes define, in more general terms, the
characteristics expected of a good scenario, but are not precise enough to facili-
tate the assessment of the quality of one scenario in relation to all other scenarios
in a suite. Thus, BDD quality facets in the literature have focused on quality
at the scenario level, when the present work is interested in quality at the suite
level.

To obtain attributes that are suitable for assessing the quality of a scenario
relative to all other scenarios across a feature suite, we borrowed ideas from the
quality attributes in the work of Oliveira et al. [17] and complemented these ideas
with other practitioners’ opinions on quality in BDD feature suites. To obtain
practitioners’ opinions on quality in BDD feature suites, we analysed articles

Quality of BDD Specifications 91

from the BDD Addict Newsletter [20], a monthly online newsletter about BDD,
which publishes articles about various aspects of BDD from the perspective of
BDD practitioners. Articles from 32 issues of the newsletter (from February 2016,
when the first issue was released, to December 2018) were analysed for quality
facets in BDD suites. We then searched StackOverflow1 and StackExchange2 for
any additional BDD quality facets that might not have been covered in the BDD
Addict Newsletter.

Table 1 summarises the quality facets we obtained from both scientific and
grey literature. Some of these quality facets focus on the step level, others focus
on the scenario level, and still others focus on the suite level.

Table 1. BDD quality aspects from scientific and grey literature

S/n Quality Aspect

1 A good quality scenario should be concise, testable, understandable,
unambiguous, complete, and valuable

2 Reuse of steps across scenarios can improve suite quality

3 Declarative (high level) steps are preferred to imperative (low level) steps

4 Business terminology should be consistently used across the specification

5 Scenarios should focus on the benefit they offer to users, if implemented

6 Scenarios should use the terminology understood by all project stakeholders

7 Each scenario should test one thing

8 Scenario titles should be clear

9 Scenario descriptions should be focused

10 Personal pronoun “I” should be avoided in steps

11 Too obvious and obsolete scenarios should be avoided in the suite

12 Scenario outlines should be used sparingly

13 Scenarios should clearly separate Given, When and Then steps

14 Use past tense for contexts (Given), present tense for events (When), and
“should” for outcomes (Then)

The review of both scientific and grey literature resulted in a useful set of
quality notions for general use, but none of them were sufficiently precise to allow,
for example, a tool to be created to find violations or propose improvements.
We selected 4 of these notions for further analysis, based on their potential to
be precisely defined, and created from them four hypothesised principles to be
tested against community opinion. These principles are presented in the next
four subsections.

1 https://stackoverflow.com/.
2 https://stackexchange.com/.

https://stackoverflow.com/
https://stackexchange.com/

92 L. P. Binamungu et al.

3.2 Principle of Conservation of Steps

A BDD scenario consists of a sequence of steps, as illustrated in the simple bank-
ing example in Listing 1. The Conservation of Steps principle seeks to maximise
the use of existing step phrases across the suite, and tries to avoid having too
many step phrases that are used only in one or two scenarios. To illustrate this
idea, suppose we need to write a scenario for when the bank customer tries to
withdraw more money than is in their account; this principle suggests we should
reuse the step phrases from the existing scenarios rather than inventing new
ways of phrasing the same idea (e.g. “my account is in credit by $10” rather
than “my account balance is $10”).

This principle is based on the rationale that the steps in a BDD suite form a
vocabulary for talking about the functionality of the system. The Given and Then
steps describe different aspects of the system state, while the When steps describe
all the state-changing actions the completed system should be able to take. If
the same functionality can be expressed using a smaller number of steps, that
should reduce the comprehension effort needed to understand the whole suite,
as well as reducing the chance that duplicated or subtly inconsistent scenarios
will be added in future.

3.3 Principle of Conservation of Domain Vocabulary

Any organisational process that is supported by software will typically accrue
over its lifetime a set of terms or phrases describing the key ideas in the domain
of the process that are used by the people involved to communicate about and
advance the state of the work. The Ubiquitous Language agile practice requires
the software team to use the same terms wherever possible, in the artefacts that
describe and constitute the system [19]. This is also true within BDD suites.
For example, in the scenario in Listing 1, it would be desirable to use the term
“balance” whenever referring to the amount funds remaining in an account,
instead of inventing new phrases which might be synonymous to “balance”.

With this in mind, the Principle of Conservation of Domain Vocabulary seeks
to maximise the value of each domain term or phrase that is used in the BDD
suite. Inevitably, in any human endeavour, duplicate terms may be used for the
same concept. But each additional term increases the cognitive load for readers
and writers of scenarios. We therefore consider a suite to be of high quality if it
can express the required semantics clearly with the minimum number of domain
terms and phrases.

3.4 Principle of Elimination of Technical Vocabulary

Since BDD scenarios in a suite are meant to be readable by all project stakehold-
ers (including end users), the use of technical terms that, in most cases, only the
development team can understand, is discouraged. For instance, in the “When”
step of the scenario in Listing 1, use of the phrase “I click the button for with-
drawing $20” would reduce the chances of comprehension by some end users, as

Quality of BDD Specifications 93

well as imposing design choices onto the specification that may be non-optimal
in the implemented system. As such, scenarios that use domain terms are gen-
erally preferred to scenarios that use technical terms. This principle, therefore,
focuses on minimising the use of technical terms in the steps of BDD scenarios
across the suite.

3.5 Principle of Conservation of Proper Abstraction

One challenging aspect in the creation of a BDD feature suite is to select an
appropriate level of abstraction for the scenarios, and in particular for the steps.
Higher level steps convey more semantics, so that scenarios can be expressed
using fewer steps, and are often closer to the domain concepts that end users
are familiar with. But they require more extensive glue code to be written,
with more embedded assumptions, so that sometimes the meaning of the suite
cannot be understood with precision without reference to the glue code. Lower
level steps describe more fine-grained aspects of system state and state change.
Scenarios using them will typically be longer, requiring more steps to express
the same semantics than when using higher level steps. But lower level steps
require smaller simpler glue code to implement them. Feature suites written
using very low level steps can be too procedural, resembling traditional testing
scripts, rather than end-user focused declarative examples.

In Listing 2 which shows a scenario that belongs to the same feature as that
in Listing 1, the “Given” condition (which could be expressed as “my account
is in credit by $10”) is broken into two lower level steps on lines 2 and 3. This
introduces some inconsistency in the abstraction levels of steps in the two sce-
narios (the one in Listing 1 and the one in Listing 2), though both scenarios
belong to the same feature. Such inconsistency could also manifest in scenarios
across different features of the same BDD suite.

Listing 2. Scenario for unsuccessful withdrawal due to insufficient funds in the account

1 Scenar io : Debit account un su c c e s s f u l
2 Given I have an account with the bank
3 And my balance i s $10
4 When I r eque s t withdrawal o f $100
5 Then nothing should be d i spensed
6 And I should be to ld that I have i n s u f f i c i e n t funds

Intuitively, therefore, a BDD feature suite in which scenarios are written at a
consistent level of abstraction will be easier to understand, extend and maintain.
On the contrary, if the feature suite has a mix of scenarios expressed at a low
level of abstraction and scenarios expressed at a higher level of abstraction, it
can be difficult for a maintenance engineer to decide on the level of abstraction
to use in expressing a new scenario. Moreover, there is likely to be duplication of
steps and glue code, and the test harness code will also be at inconsistent levels
of abstraction, adding to the comprehension and maintenance burden.

94 L. P. Binamungu et al.

4 Community Support for the BDD Quality Principles

We used a survey with 9 questions to gather practitioners’ opinions on the 4
principles. We wanted to discover whether the principles resonated with practi-
tioners as meaningful facets of BDD suite quality, and to discover whether there
were important quality facets we had overlooked.

4.1 Survey Design

The survey questions covered respondents’ demographics, views on the four prin-
ciples and opinions on quality aspects not covered by them. The questions on
demographics were:

Q1: Which of the following best describes your job?
Q2: What is the size of your organisation?
Q3: Which of the following best describes your experience of working with
BDD?
Q4: What country are you based in?

To mitigate the potential for bias and allow respondents to react in a natu-
ral way, the principles were not formally disclosed in the survey. Instead, we
sought respondents’ degree of agreement with informal statements of the prin-
ciples. Thus, the next four questions, Q5 through Q8, are respectively informal
statements for Conservation of Steps, Conservation of Domain Vocabulary, Elim-
ination of Technical Vocabulary, and Conservation of Proper Abstraction.

Q5: When adding new scenarios to a BDD suite, we should strive to reuse
existing steps wherever that is possible without compromising readability of
the scenario.
Q6: When writing the BDD scenarios for a particular domain, we should
strive to make use of a minimal set of domain terms in our scenario steps.
That is, we prefer to write steps that reuse domain terms already used in other
steps, rather than introducing new terms, wherever that is possible without
compromising readability of the scenario.
Q7: When adding new scenarios to a feature suite, we should prefer to use
steps that are expressed using domain terms over steps that are expressed
using more technical language, whenever we have a choice.
Q8: Within a feature suite, the abstraction levels of steps in one scenario
should be largely consistent with the abstraction levels of steps in other sce-
narios in the suite.

We then added a question for respondents to mention any other BDD suite
quality facets that might not have been captured by the four principles:

Q9: Please give us any other thoughts on how to keep scenarios and steps of
a BDD specification readable, easy to extend, and maintainable.

Quality of BDD Specifications 95

Questions 1 to 3 presented respondents with options to choose from, while ques-
tion 4 was free text. Questions 5–8 asked respondents to indicate their degree of
agreement, on a Likert scale, with each of the given statements. An “other” free
text option allowed respondents to provide alternative responses or to qualify
their degree of agreement. Question 8 was supplemented by 2 example scenarios,
clarifying the meaning of “abstraction level”. Question 9 allowed free text for
respondents to freely describe additional quality aspects.

The survey was pretested on a BDD practitioner. It was deployed using
SelectSurvey.NET on our university’s servers, and ran for one month from
December 2018.

4.2 Respondents and Their Demographics

We distributed the survey through a convenience sample using online discus-
sion groups and personal emails. Although this approach to sampling limits the
ability to generalise from the findings, convenience sampling is the recommended
pragmatic alternative when probabilistic sampling is not possible [8]. The survey
was posted to several Google Groups3 and through an e-mail list of 500+ con-
tributors to BDD projects in GitHub4, supplemented by our personal industry
contacts. Since we requested respondents to share the survey with other inter-
ested parties, some respondents might have been recruited through snowballing.
Kochhar et al. [10] and Cito et al. [3] used similar methods to recruit survey
respondents.

The survey was viewed by 129 people, of whom 56 submitted responses to
the questions on BDD suite quality. Hereafter, all discussions of survey results
refer to this subset of 56 respondents. We randomly assigned numbers to each
respondent and refer to them as R1 to R56. The number of responses to questions
on the four principles were: Conservation of Steps (55), Conservation of Domain
Vocabulary (54), Elimination of Technical Vocabulary (55), and Conservation
of Proper Abstraction (56). Question 9, which asked about quality aspects not
covered by the principles, received 31 responses.

The distribution of respondent roles was: Developer (60.7%), Tester (12.5%),
Consultant (7.1%), Chief Technology Officer (CTO) (5.4%), Researcher (3.6%),
Business Analyst (1.8%), Other (7.1%), and did not say (1.8%). The sizes
of respondent organisations were: 1–20 employees (26.8%), 21–99 employees
(16.1%), 100–1000 employees (26.8%), more than 1000 employees (21.4%), all
sizes (7.1%), did not mention (1.8%). Respondents’ experience of working with
BDD were: <1 year (7.1%), 1–5 years (28.6%), 6–10 years (51.8%), and >10
years (12.5%). Finally, the geographical distribution of respondents were: Europe
(64.3%), North America (21.4%), Asia (5.4%), Zealandia (7.1%), and did not say
(1.8%).

3 Cucumber, Behaviour Driven Development, Specflow, Concordion, and Serenity
BDD.

4 The list was harvested through a process described elsewhere [1].

96 L. P. Binamungu et al.

4.3 Survey Data Analysis

We first plotted the respondents’ levels of agreement for each principle, and
summarised other respondents’ comments on each principle. Then, we used the
thematic analysis guidelines by Braun and Clarke [2] to analyse the free text
responses on other ways to keep BDD suites comprehensible, extensible and
maintainable. In particular, we conducted theoretical thematic analysis [11], in
which data analysis is guided by the research question; in our case, the ques-
tion of interest was how to keep BDD specifications readable, extensible and
maintainable.

Fig. 1. Acceptability of each BDD quality principle by respondents

Data coding began after an initial pass through the responses. We coded
everything in the text that related to readability, extensibility and comprehen-
sibility of BDD specifications. We used open coding—we had no predetermined
codes. After coding, we grouped related codes together to form the list of initial
themes which we iteratively refined to produce the final list. Finally, we cate-
gorised the themes as actionable points either for all project stakeholders or for
developers/QAs.

4.4 Survey Results

Figure 1 shows the respondents’ degree of agreement with each principle. Each
principle was accepted (strongly agree/agree) by at least 75% of the respondents
who answered the question and clearly indicated their degree of agreement.
Other comments on the principles were as follows.

– Conservation of Steps: steps should also be expressed in general terms;
sometimes it can be a good idea to focus on writing clear steps that serve

Quality of BDD Specifications 97

the purpose, and then fix the design later; the main focus should be on the
readability, and reuse of steps can affect the readability and maintainability
of the specification.

– Conservation of Domain Vocabulary: it should be possible to use new
domain terms whenever necessary, provided that the specification remains
readable to customers.

– Elimination of Technical Vocabulary: implementation words can some-
times be used, depending on the product owner and expected readers of the
specification; sometimes, it can be challenging to translate domain words used
in scenarios into implementation details.

– Conservation of Proper Abstraction: the abstraction levels should be
determined by capturing correct requirements, and producing scenarios that
are readable to customers; lower abstraction levels can be appropriate if sce-
narios carry data; sometimes, one can use different abstraction levels for
Given, When, and Then steps.

Responses to question 9, requesting other opinions on facets of BDD quality,
are summarised in Table 2 and Table 3.

4.5 Discussion and Threats to Validity

In general, the majority of the respondents supported the principles as acceptable
descriptors of facets of BDD suite quality (see “Strongly Agree” and “Agree”
responses in Fig. 1). The written comments stressed the importance of reuse
within BDD, but put most emphasis on readability and clarity of the resulting
specifications. For all the principles, the respondents who stated the reasons for
dissenting mainly emphasised that decisions on reuse or use of steps, domain
terms, implementation terms and abstraction levels should be determined by
the specific contexts.

Moreover, even the other quality facets mentioned by the respondents
(Table 2 and Table 3) resonate well with the quality principles we have proposed.
For example, themes 3 and 5 in Table 2 respectively resonate with the Princi-
ple of Conservation of Domain Vocabulary and the Principle of Elimination of
Technical Vocabulary; at the same time, theme 4 in Table 3 proposes keeping an
inventory of all steps in a suite, which would be a facilitative environment for
the implementation of the Principle of Conservation of Steps.

The threats to the validity of our results are the following:

– We mainly depended on practitioners with online presence, either through
GitHub or other online forums where BDD and other agile topics are dis-
cussed. Thus, we might have missed some in-house practitioners that are not
easily reachable through any of those means. To mitigate the effects of this, we
requested those who completed or saw the survey to refer it to others. Also,
we sent survey completion requests to some practitioners who were known in
person to the authors, and requested them to share the survey to others.

98 L. P. Binamungu et al.

Table 2. Other recommended practices for all project stakeholders on how to keep
BDD specifications readable, easy to extend, and maintainable

S/n Theme Frequency Sample Excerpts

1 Specification should act as readable

business documentation

11 -“The key is to have a multi-layered

approach; the gherkin scenarios should

focus on being readable as business

documentation...” (R8, Consultant)

2 Clear description of business goals using

examples

5 -“Describe the business goal and the

steps on how to achieve them as clearly

as you understand at the moment.” (R4,

Developer)

-“Focus on clean specifications that are

consistent within the bounded context”

(R6, IT Consultant)

3 Use of common domain concepts and

terms across the specification

5 - “...I like the idea of a glossary of terms

from the Writing Great Specifications

book...” (R6, IT Consultant)

-“Use the same domain language and

terminology as the rest of your organi-

sation/customers/industry” (R26, Chief

Technology Officer)

-“...Have a glossary with important

domain concepts, primary term and

possible synonyms.” (R44, Principal

Software Architect)

4 Focus on capturing comprehensive

requirements for all project stakeholders

5 - “BDD specification should satisfy both

business analyst and developer as much

as possible.” (R11, Developer)

- “Everything around BDD and

Specification by example is around

creating a shared understanding. That

is the core reason to do examples in the

first place; the help us uncover hidden

assumptions...” (R18, BDD Coach)

5 Specification should be easy to

understand based on general domain

knowledge

4 -“Test them on other people not involved

in the project. Can they understand what

they mean? Can they determine the

intent of each scenario?... ” (R2, Con-

sultant)

-“Where possible, involve less technical

stakeholders and team members in the

process of scenario development...”

(R46, Developer)

6 Share specs with stakeholders for

reference and correction, and perform

regular maintenance of specs

4 -“I believe the key would be to period-

ically revisit them and keep updated, if

necessary rewrite or reword older ones. I

find it very useful to also publish scenar-

ios using ci tools somewhere so business

people can read specs and spot inconsis-

tencies” (R47, Developer)

-“At the very least, have the specs avail-

able for reference by the project stake-

holders.” (R46, Developer)

-“...Refactoring also applies to BDD

scenarios...” (R44, Principal Software

Architect)

Quality of BDD Specifications 99

Table 3. Other recommended practices for QAs and developers on how to keep BDD
specifications readable, easy to extend, and maintainable

S/n Theme Frequency Sample Excerpts

1 Write reusable and yet focused

steps and step definitions

11 -“...the gherkin scenarios should focus

on being readable as business documen-

tation, and map to reusable steps in the

step definitions. It is the DSL code in the

step definitions where the real reusability

benefits occur” (R8, Consultant)

-“It’s best to re-use steps either by

referring to them directly (Using Given,

And...), or creating a new step

definition using the underlying API,

not calling one step definition from

another” (R24, Software Engineer in

Test)

2 Aim for more stateless scenarios 4 -“The scenarios should be stateless, in

the sense that they should store as few

data as possible.” (R50, Developer)

3 Proper use and order of Given,

When, and Then steps; and

careful choice and use of

framework-specific BDD features

4 -“Ensure that WHEN’s only perform

actions and THEM’s only assert (do

not modify the SUT state) and are

expressed as such” (R43, Tester)

-“...Choose good titles

(scenario/feature) 9) Don’t send test

data from feature file, (but examples of

behavior are allowed)10) Less is More

11) Limit one feature per feature file.

This makes it easy to find features. 12)

Hide data in the automation 13) Steps

order must be given/when/then - not

other order‘” (R25, Test Architect)

4 Miscellaneous: Keeping an

inventory of all steps in a project;

clear separation of

customer-readable tests from glue

code and the underlying API; and

leveraging the full capabilities of

underlying BDD framework and

regular expressions

3 -“I’m not aware if this is already pos-

sible but it would be helpful to produce

a dictionary of all the steps used in a

project by extracting them from the fea-

ture suites.” (R1, Developer)

-“The key is to have a multi-layered app-

roach; the gherkin scenarios should focus

on being readable as business documen-

tation, and map to reusable steps in the

step definitions. It is the DSL code in the

step definitions where the real reusability

benefits occur” (R8, Consultant)

-“Make full use of the underlying BDD

framework / regular expressions and

craft the step definitions like a powerful

text-based API.” (R33, Developer)

– The four quality principles we propose were partly influenced by our choices
of what to focus on in order to come up with an initial set of BDD suite
quality principles for testing against community opinion (Sect. 3.1). To miti-
gate the effects of this, our choices of quality aspects to focus on were mainly
informed by the quality facets from the state-of-the-art and the state-of-

100 L. P. Binamungu et al.

practice (Sect. 3.1). Moreover, all the principles were supported by majority
of survey respondents from the BDD practitioner community (Fig. 1).

– Most of the respondents might have been using a particular BDD tool, so
that our results could be valid for users of a specific BDD tool only. To cover
practitioners using a variety of BDD tools, we followed the objective criteria
mentioned in Sect. 4.2 to identify email addresses to which survey completion
requests were sent. We also posted the survey in a general BDD forum, in
anticipation that respondents from that forum might be using different tools.

– The use of convenience sampling (in our case, depending on self-selecting
respondents within the groups we contacted) might limit the ability to gen-
eralise from the survey findings. To mitigate the effects of this, we survey 56
respondents from 5 continents across the world (Sect. 4.2), and some of the
respondents were contributors to sizeable BDD projects in GitHub (Sect. 4.2).
Still, our results may not generalise to all BDD practitioners across the world.
For example, our results do not represent BDD practitioners who are not pro-
ficient in English.

5 Conclusions

BDD is currently used by industry teams to specify software requirements in a
customer understandable language [1]. This produces a collection of examples
that act as executable tests for checking the behaviour of the SUT against the
specifications. However, large volumes of BDD suites can be hard to understand,
maintain and extend. Duplication, for example, can be introduced by members
joining the teams at different points in time.

We have proposed four principles for assessing the quality of BDD suites.
Each principle was supported by at least 75% of the practitioners we surveyed.
Practitioners also emphasised the importance of reuse within BDD, but stressed
more on readability and clarity of the resulting specifications.

In the future, we will investigate the operationalisation of these principles,
so that they can be used to assess the quality of BDD suites. Moreover, we
will investigate the possibility of developing and evaluating more principles from
other issues reported by practitioners (Table 1, Table 2, and Table 3). For exam-
ple, we need a principle on “readability” of scenarios in a suite, a property that
was rated highly by the survey respondents, and that probably trumps all over
other quality principles. Respondents would prefer to keep the scenario that
breaks our rules if it is the more readable one. This suggests a future work
idea, looking for general metrics of text readability, to see if they can be applied
to BDD suites. As well, we will investigate novel ways to help practitioners to
manage steps, terms and abstraction levels of specifications. It might also be
worthwhile investigating how the quality of BDD feature suites is related to the
overall system quality, to inform software quality planning in organisations.

Quality of BDD Specifications 101

References

1. Binamungu, L.P., Embury, S.M., Konstantinou, N.: Maintaining behaviour driven
development specifications: challenges and opportunities. In: 2018 IEEE 25th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 175–184. IEEE (2018)

2. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Res.
Psychol. 3(2), 77–101 (2006)

3. Cito, J., Leitner, P., Fritz, T., Gall, H.C.: The making of cloud applications: an
empirical study on software development for the cloud. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pp. 393–403. ACM
(2015)

4. Cochran, R., Vaughn, C., Anderson, R., Patterson, J.: cuke sniffer. https://github.
com/r-cochran/cuke sniffer (2012)

5. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to
improve unit tests. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pp. 107–118. ACM (2015)

6. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017)

7. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2012)

8. Fricker, R.D.: Sampling Methods for Online Surveys. The SAGE Handbook of
Online Research Methods (2016)

9. Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R., Braun, P.: Hunting
for smells in natural language tests. In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 1217–1220. IEEE Press (2013)

10. Kochhar, P.S., Xia, X., Lo, D., Li, S.: Practitioners’ expectations on automated
fault localization. In: Proceedings of the 25th International Symposium on Software
Testing and Analysis, pp. 165–176. ACM (2016)

11. Maguire, M., Delahunt, B.: Doing a thematic analysis: a practical, step-by-step
guide for learning and teaching scholars. AISHE-J All Ireland J. Teach. Learn.
Higher Educ. 9(3) (2017)

12. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Pearson Education,
London (2007)

13. Mishra, A.: Introduction to behavior-driven development. iOS Code Testing, pp.
317–327. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2689-
6 10

14. North, D.: Introducing BDD. Better Software Magazine (2006)
15. Oliveira, G., Marczak, S.: On the empirical evaluation of BDD scenarios qual-

ity: preliminary findings of an empirical study. In: 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW), pp. 299–302. IEEE
(2017)

16. Oliveira, G., Marczak, S.: On the understanding of BDD scenarios quality: pre-
liminary practitioners opinions. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.)
Requirements Engineering: Foundation for Software Quality, vol. 10753, pp. 290–
296. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-1 18

17. Oliveira, G., Marczak, S., Moralles, C.: How to evaluate BDD scenarios’ quality?
In: Proceedings of the XXXIII Brazilian Symposium on Software Engineering, pp.
481–490. ACM (2019)

https://github.com/r-cochran/cuke_sniffer
https://github.com/r-cochran/cuke_sniffer
https://doi.org/10.1007/978-1-4842-2689-6_10
https://doi.org/10.1007/978-1-4842-2689-6_10
https://doi.org/10.1007/978-3-319-77243-1_18

102 L. P. Binamungu et al.

18. Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A.: Automatic
test case generation: what if test code quality matters? In: Proceedings of the 25th
International Symposium on Software Testing and Analysis, pp. 130–141. ACM
(2016)

19. Shore, J., et al.: The Art of Agile Development: Pragmatic Guide to Agile Software
Development. O’Reilly Media Inc., Newton (2007)

20. Specsolutions. BDD addict newsletter (2020). Accessed 2 Feb 2020
21. Tengeri, D., Beszédes, Á., Gergely, T., Vidács, L., Havas, D., Gyimóthy, T.: Beyond

code coverage–an approach for test suite assessment and improvement. In: 2015
IEEE Eighth International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW), pp. 1–7. IEEE (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Characterising the Quality of Behaviour Driven Development Specifications
	1 Introduction
	2 Related Work
	3 BDD Suite Quality Principles
	3.1 Aspects of Quality in BDD Specifications
	3.2 Principle of Conservation of Steps
	3.3 Principle of Conservation of Domain Vocabulary
	3.4 Principle of Elimination of Technical Vocabulary
	3.5 Principle of Conservation of Proper Abstraction

	4 Community Support for the BDD Quality Principles
	4.1 Survey Design
	4.2 Respondents and Their Demographics
	4.3 Survey Data Analysis
	4.4 Survey Results
	4.5 Discussion and Threats to Validity

	5 Conclusions
	References

