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Abstract—At the core of many data analysis processes lies
the challenge of properly gathering and transforming data. This
problem is known as data wrangling, and it can become even more
challenging if the data sources that need to be transformed are
heterogeneous and autonomous, i.e., have different origins, and if
the output is meant to be used as a training dataset, thus, making
it paramount for the dataset to be fair. Given the rise in usage
of artificial intelligence (AI) systems for a variety of domains, it
is necessary to take into account fairness issues while building
these systems. In this paper, we aim to bridge the gap between
gathering the data and making the datasets fair by proposing a
method for performing data wrangling while considering fairness.
To this end, our method comprises a data wrangling pipeline
whose behaviour can be adjusted through a set of parameters.
Based on the fairness metrics run on the output datasets, the
system plans a set of data wrangling interventions with the aim
of lowering the bias in the output dataset. The system uses
Tabu Search to explore the space of candidate interventions.
In this paper we consider two potential sources of dataset bias:
those arising from unequal representation of sensitive groups and
those arising from hidden biases through proxies for sensitive
attributes. The approach is evaluated empirically.
Index Terms—data wrangling, fairness, bias, sample size dispar-
ity, proxy attribute, training dataset

I. INTRODUCTION

Machine learning supports decision making. However, ma-
chine learning is often crucially dependent on the available
training data, and it is important that the training data does
not manifest biases that may lead to inappropriate learned
models. Bias may lead to the inconsistent treatment of sub-
groups within the population, for example in relation to race
or gender. Reducing bias, and thus increasing fairness, has
become a topic for widespread investigation, with proposals
that intervene before, during and after the learning process [9].

Although these interventions to reduce bias close to and
within the learning process are important, it is clear that data
scientists are spending a significant fraction of their time
on data wrangling [10], the process of selecting, combining
and cleaning the available data sets, and it seems likely that
decisions made during data wrangling could lead to bias.
However, existing work on bias reduction has not investigated
the potential impact of data wrangling, or how to reduce the
likely bias associated with a wrangling process.

In this paper, we investigate how a data wrangling process
can be revised to: (i) identify features during wrangling that
may give rise to bias; and (ii) automatically modify the
wrangling process with a view to reducing the bias in the
result of the wrangling process.

More specifically, we consider two dataset features that
may be associated with bias: sample size disparity and proxy

attributes. Sample size disparity refers to inconsistent levels
of representation of different groups in data sets, and proxy
attributes are those that implicitly represent a sensitive group
(e.g., neighborhood could be a proxy attribute for race).
Given a sensitive attribute, such as gender or race, it is
straightforward to detect a posteriori the presence of sample
size disparity and proxy attributes. However, this suggests
the possibility that if data wrangling can be carried out
differently, potential sources of bias could be significantly
reduced, thereby reducing the onus on the data analyst to
detect and remove them.

In this paper, we build on the VADA approach [18] to auto-
mate data wrangling processes such that given a description of
a target structure, the system searches for ways to populate the
target from a set of sources. Given this capability, when biases
are detected in the generated wrangling plan, we identify ways
of intervening in the wrangling process that may help to reduce
the bias. The contributions of this paper are:

1) A characterization of problems that may arise during
data wrangling and lead to bias in downstream analyses.

2) A proposal for how to detect such problems and respond
to them in a system that automates the generation of data
wrangling pipelines.

3) A search algorithm that explores alternative ways of
wrangling the data with a view to producing fair results
from data wrangling.

4) An evaluation of (3) for a benchmark data set that has
been used to study fairness interventions.

The remainder of this paper is structured as follows. Sec-
tion II situates our work in relation to other work on obtaining
fair outcomes before, during or after training machine learning
models. Section III describes the data wrangling pipeline used.
Section IV gives an overview on the proposed approach, i.e.,
how we revise the generation of a data wrangling process with
a view to obtaining fairer datasets. Section V provides the
details of the proposed approach in terms of assessing fairness,
and identification of suitable collections of interventions in
the data wrangling process. In Section VI, the system is
evaluated with respect to fairness in the output data on a
set of scenarios obtained using a real-world biased dataset.
Section VII concludes.

II. RELATED WORK

This section reviews related results that seek to increase
fairness in machine learning. Proposals have been made to
intervene before, during and after the learning process, so here
we discuss how biases are detected and responded to in each



case. As our work considers interventions before learning, we
particularly focus on pre-processing data for analysis. There
are several ways to tackle the problem of removing the bias
from a model development cycle, thus, given the extensive
on-going work on the topic, the list of techniques we mention
below is an incomplete list of all available algorithms.
Pre-processing. Techniques that pre-process the data aim to
transform the available dataset so that the bias is removed [6].
The most straightforward technique is through suppression,
where the sensitive attribute and all related to it are removed
from the dataset [13]. Another method proposes relabelling
the tuples in the dataset so that the bias is removed which
usually comes with the challenge of selecting the tuples to be
relabelled [12], [13]. For instance, in [12], a Naive Bayesian
classifier is used for selecting the tuples to be relabelled. In
[22] a technique is proposed that finds a way to hide the
information of the sensitive attribute by encoding the data.
Another method that proposes alterations on the attributes with
the effect of removing disparate effect is [8].
There are also techniques that do not modify the initial data.
One of them is reweighing, which adds extra-information
to the dataset by assigning weights to the tuples [3], [13].
However, not all models can make use of the additional
information, thus, other proposals have focused on keeping
the data as is through resampling [21]. Techniques include
adding synthetic data, oversampling [4], [17], and removing
tuples, undersampling [5].
In-processing. In-processing techniques represent alterations
on the learning algorithms in order to address the problem of
having biased outcomes during the model training step [6].
In [15], [22] a regularization term is proposed that is aware
of potential discrimination. In [23] a method is proposed that
aims to train a classifier to maximize the prediction accuracy
and, at the same time, minimize the ability of an adversary to
determine the sensitive attribute values based on predictions.
Post-processing. Post-processing techniques are applied after
the model is trained, without intervening on the training phase.
In [11] a method is proposed as a post-learning step that
changes the outcome labels such that the bias is minimized
w.r.t. equalized odds [11]. The technique proposed in [14]
changes the output labels by giving positive labels to un-
favoured groups and negative to favoured.

III. TECHNICAL BACKGROUND

This paper builds on an existing data wrangling system [18]
that heretofore has wrangled data without considering the fair-
ness of the results. This section provides the details required
to understand the interventions described in Section V.

Figure 1(a) shows the data wrangling pipeline together with
its expected input, i.e., a target schema, a set of sources, and
a set of parameters. The following are the steps in the data
wrangling process that we will refer to further later.
Schema matching. Schema matching generates source-to-
target relationships that express semantic correspondences
between the source attributes and the target attributes. In this
paper, we consider matches of the following form:

mST : S.a→ T.a′, where S is an input source relation, a ∈
schema(S) is an attribute in S; T is a target relation and a′ ∈
schema(T ) is an attribute in T . The defined match expresses
that the values from source attribute S.a can be transferred in
the target attribute T.a′ as they are semantically equivalent.
Data profiling. Before mapping generation, profiling infers
candidate keys among the source attributes and inclusion
dependencies between pairs of source attributes. The profile
data is defined as follows:
candidate keys – a column (or a combination thereof) that has
unique values in the relation in which it occurs;
(partial) inclusion dependencies – given two projections R and
S with identical arity over relations R′ and S′, resp., we define
the inclusion dependency R ⊆θR,S

S, where θR,S represents
the overlap of values between attributes R and S, i.e., the ratio
of distinct values from R included in the values of S.
Mapping generation. The mapping generation component
[20] creates mappings over the pool of input sources by
performing a search through the space of possible mappings
using a dynamic programming approach where the inference
of relationships between the sources is done using profile data.
The candidate keys and the (partial) inclusion dependencies
are used to infer (approximate) foreign keys between sources
coming from different origins, i.e., sources that do not have
explicit join paths declared.
Post-processing. The post-processing component ensures that
the output dataset does not contain subsumed tuples, i.e.,
redundant data. We consider a tuple to be subsumed if it
satisfies the conditions of subsumed tuples as defined in [2]:
A tuple t1 ∈ T , where T is a relation, subsumes another tuple
t2 ∈ T if: (i) t1 and t2 have the same schema, (ii) t2 contains
more null values than t1, and (iii) t2 coincides in all non-null
attribute values with t1.

IV. APPROACH OVERVIEW

The problem of generating unbiased datasets addressed in
this paper can be defined as: Given a collection of source
tables S, a target schema T with an indicated protected
attribute P, and (at least) one fairness metric, generate a
dataset in the format of the target schema T such that the
data therein is obtained from the input data sources S and the
computed bias is minimised w.r.t. the chosen fairness metric.

We address the above defined problem through an approach
that uses a data wrangling pipeline (described in Section III
- Figure 1(a)) in an exploration technique that relies on the
tabu search paradigm. Figure 1(b) shows a high-level overview
on the system that integrates the wrangling pipeline together
with the search steps. In Figure 1(b), the first step is to run
the data wrangling process without considering any fairness
metric. This is considered the initialization phase. Then, the
system checks if the stopping criteria is met. We describe our
used stopping criterion in Section V-D. If the system decides
that the search can continue, then the dataset is assessed based
on the fairness metrics. We describe how we compute the bias
values in Section V-A. If the dataset is considered to be biased,
then a set of intervention plans is created in order to steer



(a) Data wrangling pipeline (b) Finding wrangling programs w.r.t. fairness

Fig. 1. Data wrangling search system considering fairness

the wrangling process. We describe the possible interventions,
i.e., the components of an intervention plan in Section V-B.
The wrangling process is steered through the set of input
parameters that are specified based on the intervention plan.
After the plans are created, the system evaluates non-tabu plans
(Section V-D), i.e., runs the data wrangling process with their
corresponding parameters. After all plans are evaluated, using
an objective function (Section V-C), the system updates the
best overall plan (if possible) and chooses the best local plan
to explore further. Also, all explored intervention plans from
this iteration are added to the tabu list so that the system does
not explore them again in subsequent runs. Before it recycles,
the system checks through the diversity mechanism if it is
stuck in a local optimum. If it is, then it jumps to another
search area. We describe our used diversity mechanism in
Section V-D.

V. APPROACH

In this section we describe in more detail the architecture
for finding fair datasets in a data wrangling scenario.

A. Assessing Fairness

Although the focus of our work is to aid building fair
training datasets, the two metrics that we have chosen to focus
on can be computed without the existence of a class label
(i.e., as required for building classification models). Below
we outline the two fairness metrics that we consider here.
Sample size disparity. Sample size disparity (underrepresen-
tation in [1]) occurs when the proportion of tuples in the
training data that do (and do not) belong to one of the sensitive
groups leads to loss of accuracy in outcomes (e.g., an over-
frequent decision to hire males because of fewer female tuples
in the training set used to build the hire-or-not classifier). We
compute how fair a dataset T is w.r.t sample size disparity.
Let ru (Eq. 1) be the ratio of values of the unfavoured group
(u) in the target table T with the sensitive attribute S.

ru =
|{t ∈ T, t.S = u}|

|T |
(1)

We consider the dataset T to be fair if ru ∈ [rd − e, rd + e],
where rd is the desired ratio of tuples containing the value of
the unfavoured group (u) on the sensitive attribute (S), and e
is the acceptable error. The bias bSSD (Eq. 2) is the difference
between the desired ratio (rd) and the obtained ratio (ru):

bSSD = abs(rd − ru) (2)

Example 1: Assume a scenario where a model is trained to
predict hiring likelihood of a person, with the sensitive binary
attribute gender, i.e., with two groups, male and female. If the
male group appears in significantly more tuples than the female
group, then a model trained on such a dataset can specialize
better at predicting outcomes for male entries than for female
entries. In this case, in order to achieve high accuracy for both
groups, an increase in the proportion of female entries may be
needed to avoid bias in the model.
Proxy attributes. The presence of proxy attributes leads to
hidden bias when a value in the sensitive attribute can be
determined from the value of another attribute, which thereby
acts as a proxy for the sensitive one [16].

In this paper, we determine a value dependency by consid-
ering approximate functional dependencies [19] between the
sensitive attribute and other dataset attributes. We compute
how fair a dataset T is w.r.t hidden bias through proxy
attributes of the sensitive attribute S as follows.

Consider an approximate functional dependency afd of the
form P → S where S is the sensitive attribute, and P is an
attribute in the same table as S, P 6= S . The approximate
functional dependency coefficient cP→S denotes the ratio of
tuples that satisfy the afd. Correspondingly, 1−cP→S denotes
the ratio of tuples that violate it.

Given a set of approximate functional dependency coeffi-
cients C = {cP→S |P, S ∈ schema(T ), }, we compute the
bias for proxy attributes as defined in Eq.3.

bPA =

∑
i(c

2
i )∑

i(ci)
(3)

where ci ∈ C. bPA is the weighted average of the coefficients
of detected approximate functional dependencies. The weights



for the coefficients are the coefficients themselves because, this
way, the algorithm can assign them proportional penalties. We
consider a dataset T as being biased if bPA > t, where t is a
given threshold.

Example 2: Consider the same scenario in Example 1.
Assume that before training, the gender attribute is deleted
from the dataset. Further assume that an attribute marital
status exists whose domain is {Husband, Wife, Divorced, Sin-
gle}. Thus, for the most part, when a Wife value appears, the
gender attribute has value female. Likewise for the (Husband,
male) pair. In such a case, gender comes very close to being
inferrable from the marital-status attribute, even if gender
itself is removed from the dataset.

B. Available Interventions

As explained in Section III, a data wrangling process uses
matches and profiling data to perform informed decisions
when deciding on how to transform data in the sources into
the format stipulated by the user for the target. Note that
the wrangling pipeline takes as input a set of parameters.
If these parameters are changed, then the outcome of the
wrangling process will differ in ways that ultimately stem
from the new information. In order to adjust the inputs to
the wrangling process we consider interventions on two types
of parameter: matches and inclusion dependencies. Each of
these interventions can have different effects on the generated
wrangling process, which we outline below.
Matches. A match informs the system about the data that
can be transferred from a source attribute to the target. In
our data wrangling pipeline, the matching component finds all
source attributes that can contribute to a target attribute. As an
intervention, we can consider the exclusion of a match from
the pipeline. The removal of a match mST : S.a → T.a′ can
have one of the following effects:

1) The matching component in the wrangling pipeline may
find another source attribute S.a′′, in the same source
S, such that mST : S.a′′ → T.a′. In other words,
S.a′′ is detected as being another way that source S
can contribute to the target T .

2) The matching component in the wrangling pipeline may
find another source attribute P.a, in another source P ,
P 6= S, such that mPT : P.a → T.a′. In other words,
P.a is an alternative to S.a, therefore it can contribute
to T.a′ with information from P replacing source S.

3) The matching component may not find an alternative
source attribute, which potentially means populating
attribute T.a′ with null values.

The system decides to exclude a match if the (biased)
output dataset contains a sensitive or a proxy attribute that
was populated using that match.
Inclusion dependencies. An inclusion dependency informs the
system about overlapping values across source attributes. This
information is used to infer inter-source join opportunities.
In our data wrangling pipeline, the mapping generation com-
ponent finds all combinations for merging the sources based
on the profiling data, including inclusion dependencies. The

removal of an inclusion dependency IP,S = P ⊆θP,S
S, where

θP,S is the degree of overlap, can have one of the effects:
1) The mapping generation component may find another

join opportunity between the same two sources, S and
P , so that they are still joined albeit on a different pair
of attributes.

2) The mapping generation component may not find an-
other way to join the two sources directly, but they may
still be joined through a third source that shares a join
attribute with both sources.

3) The mapping generation component may not find an-
other way to join the two sources, which therefore results
in their data no longer being aligned.

The system decides to exclude an inclusion dependency
if the (biased) output dataset was built based on a merge
that resulted from the information brought by the inclusion
dependency, e.g., a join resulted from the overlap information.
Intervention plan. The intervention plan is a set of matches
and/or inclusion dependencies that are excluded from the
wrangling pipeline, i.e., not used to create the target data.

Example 3: Continuing Example 2, for a target
T (ms, edu, gender), consider the source S(id,ms, name)
with a match m1 : S.ms → T.ms on marital status
(ms) to the target T . S was joined with another source
P (id, edu, gender) on attributes id as they had an inclusion
dependency IP,S = P.id ⊆θ S.id . The output dataset
resulted as biased: T.ms is a proxy attribute for T.gender
(see Example 2). Given that T.ms was populated by S.ms,
the system can try to remove the (proxy) bias through one of
the following plans: (i) plan1 = {m1}, (ii) plan2 = {IP,S},
or (iii) plan3 = {m1, IP,S}.

C. Objective Function

In order to compare different intervention plans, we use
an objective function. Given that an intervention that aims
to minimize the bias can result in a less complete dataset,
we use an objective function that takes into consideration the
trade off between bias and data completeness. For this, we
use a weighted sum where weights add up to 1,

∑
wi = 1.0.

The cost of an intervention plan is described by the objective
function in Eq. 4. The overall aim is to minimize the cost,
thus, less costly plans are preferred to more costly ones.

cost =

#strategies∑
i=0

wi ∗ bi + wQ ∗ rnulls (4)

where (i) bi (see Eq.1, 2, and 3) abstracts over the computed
bias for each of the active fairness metrics (sample size
disparity and/or proxy attributes), (ii) rnulls is the ratio of
missing values in the evaluated dataset, and (iii) wi and wQ
are the weights of the bias(es) and of the completeness.

D. Searching the Space of Potential Wrangling Programs

Search algorithm. We use Tabu Search to find an effective
solution in the search space by iteratively moving from one
potential solution to a better solution, until the stopping criteria



is satisfied. Search algorithms can become stuck in local
optima or in areas where the scores plateau. Tabu Search
explores the neighborhood of a candidate solution and chooses
the best candidate to explore next. In order to avoid becoming
stuck in a local optimum, Tabu Search is able to jump out of a
local optimum by including a diversity property that allows the
search to move to another part of the search space such that
it has a chance of discovering better candidate solutions. Tabu
Search precludes the exploration of already-visited solutions
using a tabu list containing points in the search space that
must not be explored again, i.e., that were tabooed.
Tabu Search for our problem. We explore the search space
of possible intervention plans that could be applied to the
wrangling process in order to produce a less biased output
dataset. In order to apply Tabu Search to our problem, we need
to map concepts in our problem domain to search concepts,
viz., neighbourhood, tabu list, stopping criterion, and approach
to diversification. We now describe how we have done that.
Neighbourhood generation. When considering a candidate
intervention plan, the data wrangling pipeline is run with the
interventions stipulated in the plan. Based on the output of
the data wrangling process, if the resulting dataset is still
biased w.r.t. the fairness strategy, a new set of interventions is
then produced. The neighbourhood for the currently explored
plan is built by considering the resulting new interventions.
A neighbour is a new intervention plan comprising all in-
terventions in the currently explored plan together with one
intervention from the resulting new interventions. However,
among the new plans (i.e., neighbours), some may be tabooed
and therefore will be discarded rather than explored.
Tabu list. Tabu Search proposes an efficiency strategy based
on the use of a tabu list, which contains points in the search
space that have been explored. The purpose of a tabu list is to
prevent the exploration of intervention plans that have already
been evaluated (more on plan evaluation in Finding potential
wrangling programs).
Diversity mechanism. Tabu Search uses a diversity mechanism
to jump out from an area that could have reached a local
optimum. For our problem, a diversity mechanism is run if
the overall best plan has not changed after a certain number
of explored neighbourhoods. This number is a user-defined
threshold and is given as input to Algorithm 1 (see below).

Jumping out is implemented by randomly choosing a subset
of intervention plans where all plans are grouped by the num-
ber of interventions they contain. Then, from the randomly-
selected subset of plans, the algorithm chooses the one with
the lowest cost (computed by the objective function). The
algorithm checks if the chosen plan has already been explored
before. If it has not, it proceeds to explore it. If it has, it
chooses the next best plan in terms of cost. If all plans have
already been explored, then the algorithm tries to jump to
another area of the search space by randomly selecting another
subset of plans and repeats the same procedure until a plan
to be explored is found, or a maximum number of attempts is
reached, in which case it desists.
Stopping criterion. Given that the exploration space can po-

Algorithm 1 Initialization
1: function INIT(datasets[], t, maxEvPlans, maxUnchangedBestPlan)
2: tabuList← [] //global variable
3: evaluatedP lans = 0 //global variable
4: uBP ← maxUnchangedBestP lan //global variable
5: bestP lan←⊥ //global variable
6: noP lanDS, I, b, c← EVALPLAN(datasets, t, bestP lan)
7: bestCost← OBJFUNCTION(b, c) //global variable
8: EXPLORENEIGHBOURHOOD(datasets, t, plan, I)
9: return bestP lan

Algorithm 2 Evaluate Plan
1: function EVALPLAN(datasets[], t, plan)
2: outputDS, I ← DATAWRANGLING(datasets, t, plan)
3: bias← COMPUTEBIAS(outputDS)
4: cost← COMPUTECOST(outputDS)
5: tabuList← tabuList ∪ {plan}
6: evaluatedP lans← evaluatedP lans+ 1
7: return outputDS, I, bias, cost

tentially become too large to explore in its entirety, the search
algorithm needs a stopping criterion. The algorithm stops the
search if the upper limit for the number of evaluated plans has
been reached. The upper limit is a user-defined number that
is given as input in Algorithm 1.
Finding potential wrangling programs. The system starts
searching for suitable wrangling programs that could reduce
the bias. Below we outline the main system components. We
call a wrangling program a wrangling pipeline that runs under
a set of parameters. In our case, the set of parameters is given
by the intervention plan (as defined in Section V-B).
INIT. Before starting the search, the algorithm needs a base
case from which to start. This is done in the initialization
method INIT shown in Algorithm 1. INIT takes as input a
set of datasets, a target schema t, a number of maximum
evaluated plans, maxEvP lans, and a number representing the
maximum number of explored neighbourhoods without chang-
ing/updating the best overall plan. On line 5, the initialization
best overall plan is a plan with no interventions. The search is
started by evaluating the empty plan (line 6). Here, the EVAL
method returns four variables: the dataset resulting from the
wrangling (noP lanDS), the set of interventions that could be
taken into consideration for next plans (I), the bias (b) and the
cost for dataset quality (c). This initialization step represents
the step where the system correlated the source datasets and
did not aim to minimize the bias in the output dataset, thus,
becoming the baseline case. In line 8, the search starts by
exploring the neighbourhood of the baseline case.
EVALPLAN. The evaluation of a plan means running the wran-
gling process for it and then evaluating the resulting output.
EVALPLAN is outlined in Algorithm 2 that takes as input the
set of input data sources, the target and the intervention plan
that needs to be evaluated. On line 2, through the DATAWRAN-
GLING method, the system performs the wrangling for the
sources and the target, where the wrangling parameters are
updated according to the plan, i.e., the parameters contain, for
exclusion, matches and/or inclusion dependencies according to
the input plan. DATAWRANGLING outputs the resulting dataset



Algorithm 3 Neighbourhood Exploration
1: function EXPLORENEIGHBOURHOOD(datasets[], t, exlPlan, I)
2: if CHECKSTOPCRITERIA() then
3: return
4: bestLocalP lan←⊥
5: bestLocalCost← inf
6: nextI ← []
7: neighbours←GENNEIGHBOURS(exlP lan, I)
8: for each neighbour in neighbours do
9: if CHECKSTOPCRITERIA() then

10: break
11: if neighbour not in tabuList then
12: nDS, nI, nB, nC ← EVALPLAN(datasets, t, neighbour)
13: nCost←OBJFUNCTION(nB, nC)
14: if nCost < bestLocalCost then
15: bestLocalP lan← neighbor
16: bestLocalCost← nCost
17: bestLocalI ← nI
18: if bestCost < bestLocalCost then
19: bestP lan← bestLocalP lan
20: bestCost← bestLocalCost
21: uBP ← 0
22: else
23: uBP ← uBP + 1
24: if maxUnchangedBestP lan ≤ uBP then
25: nextP lan, nextI ← DIVERSITYMECHANISM()
26: else
27: nextP lan← bestLocalP lan
28: nextI ← bestLocalI
29: EXPLORENEIGHBOURHOOD(datasets[], t, nextP lan, nextI)

and the set of interventions that are possible for changing the
output dataset. On lines 3-4, the bias and the cost are computed
for the resulting dataset. The bias computed by COMPUTE-
BIAS is based on a chosen fairness metric as explained in
Section V-A. The cost computed by COMPUTECOST is done
by determining the ratio of null values in the output dataset.
Then, on line 5, the evaluated plan is marked as tabu so that
the system does not evaluate it again in subsequent iterations.
Also, on line 6, the number of evaluated plans is increased
by 1. This is relevant for checking the stopping criteria which
has an upper limit for the number of evaluated plans.
EXPLORENEIGHBOURHOOD. Algorithm 3 shows the recursive
method that explores the neighborhood of a best local plan at
a given point. The best local plan represents the plan from
a given neighbourhood that is the most cost-effective. The
cost is computed through the objective function explained in
Section V-C. On lines 2-3, the system checks if the stopping
criterion is met. In our case, the search stops if the maximum
number of evaluated plans is reached. On lines 4-6, the best
local plan variables are initialized before the neighborhood
exploration starts. On line 7, through GENNEIGHBOURS, the
neighbour plans are generated as follows: each neighbor
plan contains all interventions from the currently explored
plan (explP lan) together with only 1 intervention from the
proposed set of interventions I . The number of neighbours
will be equal to the number of interventions in I . On lines 8-
17, each neighbour plan is evaluated and, as each is evaluated,
the best local plan is updated with the most cost-effective
plan. Before evaluating a plan, on lines 9-10, the system
checks again if the stopping criterion is met as the upper
limit of evaluated plans can be reached during the exploration

of the neighbourhood. On line 18, the system checks if the
best overall plan needs to be updated with the best local
plan, i.e., if the best overall plan has a higher cost than the
best local plan, then it is updated (lines 19-20). Also, on
line 21, the uBP variable is reset to 0 as the best overall
plan has been changed. Otherwise, if the best overall plan
remains unchanged, then uBP is incremented. uBP variable
keeps track of how many times a neighborhood has been
explored without changing the best overall plan. On line
24, it is checked if uBP exceeds the maximum number
of neighborhoods that have been explored without changing
the best plan. If this upper limit has been reached, then the
system runs the diversity mechanism on line 25. The diversity
mechanism will yield the next plan to be explored (paired with
its corresponding interventions), regardless of the fact that the
plan is in the tabu list. If this upper limit has not been reached,
then the search proceeds by exploring the neighborhood of
the best local plan (line 29). The EXPLORENEIGHBOURHOOD
method is recursively called until the stopping criteria is met.

VI. EXPERIMENTS

In this section we evaluate the performance of the wrangling
pipeline w.r.t fairness using two types of experiments: Sec-
tion VI-A shows how fairness can differ with varying number
of sources, and Section VI-B explores the effect of the amount
of searching for interventions on fairness and completeness.
Input. Sources. For building the sources in our scenarios we
used the Census Adult dataset [7]. We chose this dataset as it
is known to be biased on both types of fairness metrics that we
consider. The sensitive attribute is gender as it contains ≈66%
male and only ≈33% female values. The potential proxy
attribute is considered the relationship attribute as ≈41% of
the relationship values can determine the gender value, e.g., the
tuples contain pairs such as (Husband, male), (Wife, female).

The starting point is a single table dataset, but to experiment
with data wrangling, several tables are needed. So, for the pur-
poses of experimentation, the dataset was divided into smaller
tables by using horizontal and vertical partitions of random
sizes that, if correctly assembled back, can reconstruct the
initial dataset. Besides the tables resulting from the partitioning
process, we created a subset of tables where we duplicated
tables where relationship attribute appeared, and we replaced
the Husband and Wife values with Spouse, aiming to weaken
the dependency between the gender and relationship. This
provides alternative ways of populating the target with data
for each individual, some of which are fairer than others.
Target schema. The target schema is that of the initial Adult
dataset [7], i.e., containing all 14 attributes.
Objective function. As explained in Section V-C, we use an
objective function (shown in Eq. 4) for the trade off between
bias and completeness. For these experiments we used weight
of 0.7 for the biases component and 0.3 for the quality cost.
Evaluation metrics. We report the results in terms of bias
and quality (nulls ratio, in our case) for three different cases:
considering the bias coming only from sample size disparity
(SSD), considering bias coming only from proxy attributes
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(PA), and bias coming from both types of strategies (SSD &
PA). In the latter case, we report the weighted sum over the two
measured biases where the weights are 0.35 each, thus, each
type of bias has equal importance in the objective function.
For comparison, we consider as baseline cases for bias the
biases computed on the datasets with no interventions.
Experimental setup. The experiments were run over an Intel
Core i5 with 2×2.7 GHz, and 8 GB RAM. We report the bias
and cost results over the average of 5 runs for each scenario.

A. Fairness Bias vs. Number of Sources

This experiment shows how the number of data sources can
affect the final outcome of the data wrangling process w.r.t. the
chosen fairness metric(s). The number of sources can influence
the output dataset as the more sources in the search space,
the more options the data wrangling pipeline can explore for
different, less biased outcomes. However, having many sources
can come with the challenge of having a prohibitively large
space to explore, thus, the likelihood of finding the optimal
plan can decrease without a high limit of evaluated plans.

For this experiment, we used a set of 5 scenarios where we
increased the number of sources from 5 to 25 (all stemming
from the same Adult dataset). All sources have at least one
join opportunity with the other sources such that the initial
dataset can be recreated through at least one way. The upper
limit for the number of evaluated plans was kept fixed at 100.
Results. The results are shown in Figures 2(a) and 2(b) for
each scenario for bias and for ratio of nulls, respectively.
Bias. Figure 2(a) shows the results on bias of the output
datasets. It can be observed that for all three cases, i.e., SSD,

PA and SSD & PA, the bias values tend to decrease from the
small scenario (5 sources) to the large one (25 sources). This
is because the data wrangling process had multiple options for
adding different data sources to the output, thus, obtaining less
biased datasets. Also, it can be observed that the set upper limit
of evaluated plans is high enough so that a way is found to
merge the sources in a less biased way for all scenarios. This is
observed by comparing each bias value with its corresponding
baseline bias value, e.g., for the 5 scenario case, the SSD bias
value is situated below the SSD baseline.

For the PA values, although almost all are below the PA
baseline, it can be seen that all are above 0.5, which can be
considered a rather high dependency outcome. This is due to
the fact that in all scenarios, the PA bias was computed based
on approximate functional dependencies with a coefficient
higher than 0.5 between the sensitive attribute and all other
attributes. Although it was expected that only relationship
would be a considered proxy attribute, it resulted that, although
less apparent, other attributes have high dependencies with the
sensitive attribute as well, leading to a high PA bias.
Quality. In our experiments, we measure the quality of the
output dataset as the ratio of nulls. Figure 2(b) shows the
result on the ratio of nulls for each of the 5 scenarios, where
the corresponding biases are the ones in Figure 2(a). An
interesting thing to observe here is the result on the scenario
with 5 sources. Here, although its SSD bias had a lower value
compared to the scenario with 10 sources, this has come with
a trade off in quality, as the ratio of nulls is ≈4 times higher
compared to that of the 10-source scenario. This happened
because the system did not have many options for intervention
plans to choose from so it picked the most suitable outcome
out of the available plans. A similar behaviour can be observed
for the other results, i.e., the higher the nulls ratio, the lower
the corresponding bias (depicted in Figure 2(a)).

B. Fairness Bias vs. Amount of Explored Search Space

This experiment shows how the set upper limit of evaluated
number of plans can affect the final outcome of the data
wrangling process w.r.t. the chosen fairness metric(s). If the
upper limit is too low for the search space, then reaching an
optimal solution, i.e., a suitable intervention plan in terms of
both bias and quality, is less likely. For this experiment we
used the 25-source scenario from Section VI-A and we varied
the upper limit for evaluated plans from 20 to 100.
Results. The results are shown in Figures 3(a) and 3(b) for
each scenario for bias and for ratio of nulls, respectively.
Bias. In Figure 3(a) one can observe that, in the first scenario,
the wrangling process does not succeed at improving the
bias for any of the fairness metrics as they are all on their
corresponding baseline. However, in Figure 3(b), it can be seen
that for the same case, the ratio of nulls is 0, meaning that,
although the dataset is biased, the 25 sources were correlated
as expected. The trend line is oriented downwards in all cases,
SSD, PA and SSD &PA, meaning that the bias decreases as the
number of evaluated plans increases. This is due to the fact
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that more parts of the search space are explored, thus, the
system can search more for a plan with a smaller bias.
Quality. Similarly to Section VI-A, Figure 3(b) shows that, as
the bias starts decreasing, the ratio of nulls starts increasing.
This is partly a characteristic of these scenarios, but the
interventions can involve removing problematic matches and
joins, changes that will tend to reduce completeness. Despite
this, it is generally possible that both bias and nulls ratio could
decrease through the same interventions.

VII. CONCLUSIONS

In this section, we revisit the claimed contributions in the in-
troduction, and elaborate how these were realised in the paper.

1) A characterization of problems that may arise during
data wrangling that may lead to bias in downstream
analyses. We have identified sample size disparity and
proxy attributes as issues that can arise and be identified
during data wrangling.

2) A proposal for how to detect such problems and respond
to them in a system that automates the generation of
data wrangling pipelines. We described how to detect
sample size disparity and proxy attributes in mapping
results, and provided techniques to identify interventions
that may (i) reduce the occurrence of these features; and
(ii) enable the identification of more suitable ways of
wrangling the data.

3) A search algorithm that explores alternative ways of
wrangling the data with a view to producing fair results
from data wrangling. Given a space of possible actions,

we have described a search process that investigates how
combinations of these actions can be used together to
increase the predicted fairness of the wrangling result.

4) An evaluation of (3) for a benchmark data set that
has been used to study fairness interventions. We have
applied the technique to a real-world data set, which has
shown how the levels of sample size disparity and level
of dependency of a sensitive attribute on proxy attributes
can be reduced.
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