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In this paper we discuss the problem of mapping relational database contents and ontologies. The 
motivation lies in the fact that during the latest years, the evolution in Web Technologies rendered the 
addition of intelligence to the information residing on the Web a necessity. We argue that the addition of 
formal semantics to the databases that store the majority of information found in the Web is important, in 
order to make this information searchable, accessible and retrievable. The key technologies towards this 
direction are the Semantic Web and the ontologies. We analyze in this paper the approaches that have so 
far been presented in order to exploit the prospects that such collaboration promises. We set the theoretical 
and practical boundaries of the mapping problem, we delve into the tools that altogether comprise today’s 
state of the art, and we provide a discussion about the benefits and the drawbacks of the existing 
approaches. We discuss the feasibility and viability of applying the mappings in real world applications as 
well as the directions that the evolution of current implementations should follow. We conclude by 
presenting the requirements that should be met in order to provide a more powerful next generation of 
mapping frameworks. 
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1 Introduction  

It is generally accepted that the rapid evolution of the Internet has brought up significant changes to 
information management. The World Wide Web changed the way people create, manage, access, share 
and retrieve information. The existing data that lie on the Web provide a significant source of 
information for almost anything imaginable. The research is nowadays focused on how to manage this 
vast amount of information. Specifically, during the latest years, great effort is being spent towards 
creating more intelligent services. The Web community is moving towards what is commonly known 
as Web 2.0. The scope of this effort consists of more efficient information management, systems with 
faster response, and enhanced intelligence in every aspect of the Web experience. Peer to peer systems, 
search engines, database technology, the Grid, Web Services and the Semantic Web, all play their part 
in this new design of the existing infrastructures. One should keep in mind though, that enhancing the 
Web is not a purpose by itself. The goal is to exploit its capabilities as a Knowledge Base or, in other 
words, to provide the user with accurate and substantial results in his search for information. 

The most powerful tools in users’ hands are search engines. Since the World Wide Web became a 
public global common currency, its content growth made the use of search engines a gateway to 
information. Without them, the Web in its present form would be useless. Terabytes of data in millions 
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of Web pages are impossible to be accessed without the use of the current search engine 
implementations. 

There are several reasons that cause this defect of the current form of the Web. The main reason of 
this weakness is that the largest quantity of existing data on the Web is stored using conventional 
relational database technology. This information is often referred to as the Deep Web [1], as opposed 
to the Surface Web comprising all static Web pages. Deep Web pages do not exist until they are 
generated dynamically in response to a direct user request. As a consequence, traditional search 
engines cannot retrieve and index Deep Web pages’ content. 

Moreover, the data that is available on the Web usually abides by ad hoc formalisms. The lack of a 
common, unified and generally accepted Knowledge Representation formalism impedes data 
exchange, interoperability and collaboration among Web communities. The institution of a common 
vocabulary, in combination with the addition of formal semantics is, among others, the goal of the 
Semantic Web vision. The common knowledge representation formalism is ought to be both human 
and machine understandable in order to allow inference extraction from existing knowledge. 

The creator of the Web, Tim Berners-Lee, proposed the idea of the Semantic Web to overcome the 
handicaps referenced. As stated in [2], the Semantic Web is about bringing “structure to the 
meaningful content of Web pages, creating an environment where software agents, roaming from page 
to page, can readily carry out sophisticated tasks for users”. The Semantic Web will not replace the 
Web as it is known today. Instead, it will be an addition, an upgrade of the existing content in an 
efficient way that will lead to its integration into a fully exploitable world-wide source of knowledge. 
In one word, the goal is to bring an order to the chaos nowadays known as the Web or, more precisely, 
the Deep Web [1]. 

The key role to this effort is played by ontologies. Their use aims at bridging and integrating 
multiple and heterogeneous digital content on a semantic level, which is exactly the key idea of the 
Semantic Web vision. Ontologies provide conceptual domain models, which are understandable to 
both human beings and machines as a shared conceptualization of a given specific domain [3]. With 
the use of ontologies, content is made suitable for machine consumption, contrary to the majority of 
the content found on the Web today, which is primarily intended for human consumption. 

Nevertheless, ontologies suffer from a scalability problem. Keeping large amounts of data in a 
single file is a practice with low efficiency. Ontologies should rather describe content than contain it. 
Meanwhile, the Semantic Web is not meant to be a candidate technology for Web Engineering, it 
should instead be an addition to current practices, rather than a substitution. The key in bridging legacy 
data with formal semantic meaning is the inclusion of mediation between relational database contents 
and ontologies, which is the exact purpose of the current paper. 

The remainder of this paper is structured as follows. In Section 2, we provide a thorough and 
multi-aspect analysis of the domain of our investigation. In Section 3, we present the tools that 
altogether comprise today’s state of the art in ontology to database mappinga. In Section 4, we discuss 
the results of our survey and we conclude in Section 5, by suggesting a number of ideas that should be 
taken into account for the design of the next generation tools. 

                                                 
a It must be clearly stated that in the current paper, mapping refers to a relation between ontology and database contents and 
should not be confused with mapping among ontologies 
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2 Problem Framework 

In this Section we provide the definitions and we attempt to approach the mapping problem from 
several viewpoints. Ontologies and their mapping to relational databases – or vice versa – present 
theoretical and practical interest when examined by Web engineers, Semantic Web and database 
theorists and practitioners, and system and knowledge modelers. 

2.1 Ontologies in Web Engineering 

Software engineers in general have to consider the adoption of a specific working concept in order to 
efficiently tackle engineering problems that arise in industrial conditions. In order to specify the 
context that encompasses specific distinct approaches, the term of technical spaces (TS) has been 
introduced. A TS is a working context with a set of associated concepts, body of language, tools, 
required skills and possibilities [4]. Before adopting a certain space, Web engineers need to compare 
the pros and cons of the available approaches. Issues that fall into consideration include expressivity 
power, ease in interoperability facilities between spaces, standardization level, and a broad list of 
engineering facilities (i.e. security) most of which are discussed about in the remainder of the current 
work. Although TSs are difficult to define, they can be easily recognized: XML-based languages 
(XML TS), Model-Driven Architecture (MDA TS) as defined by the Object Management Group 
(OMG), Data Base Management Systems (DBMS TS), Ontology TS (OTS) are some of the 
widespread technical spaces in use. In our work, we take a closer look at DBMS TS and OTS. 

The usage of ontologies in systems modeling provides powerful means for the achievement of an 
abundant system description in description logic (DL) terms. DL allows systems modeling in detail by 
deriving a concept hierarchy and a corresponding property hierarchy. DL also possesses the unique 
feature compared to the rest of TSs of defining class membership by solely stating necessary and 
efficient conditions. However, the strength of the Semantic Web is not restricted in concept 
description. 

Model checking can be realised by the concurrent use of a reasoner, a practice that assures the 
creation of coherent, consistent models. Model enrichment aims at using ontologies for providing 
richer descriptions of models from different TSs. The goal is to exploit the ontologies’ inference 
support, the formally defined semantics, the support of rules, and logic programming in general [5]. 
Hybrid approaches involve models constructed in more than one TS and provide a final model that 
comprises the mappings between them as well as the models themselves. This approach embraces the 
current survey scope that is confined to ontology and database mapping. For a further discussion, the 
interested reader is referred to [6]. 

2.2  Ontologies and Knowledge Bases 

Formally, the term ontology as defined by Gruber in [3] is a “specification of a conceptualization” 
where conceptualization is defined in AI as a structure <D, R> where D is a domain and R a set of 
relevant relations on D [7]. The set of relations comprises the intensional and the extensional relations 
also referred to as conceptual and ordinary relations respectively. The domain space is defined as a 
structure <D, W> where W is a set of maximal states of affairs of such domain (also called possible 
worlds). A conceptualization for D can be now defined as an ordered triple set C = <D, W, R>, where 
R is a set of conceptual relations on the domain space <D, W>. In other words, we can describe an 
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ontology as a set of definitions that associate the names of entities in the universe of discourse with 
human-readable text describing the meaning of the names and a set of formal axioms that constrain the 
interpretation and well-formed use of these terms. 

More abstractly, an ontology can be defined as a model of a Knowledge Base (KB). Practically, 
the languages of ontologies are closer in expressive power to First Order Logic (FOL) than languages 
used to model databases. For this reason, ontologies are considered to be at the semantic level, while 
database schemas lay at the logical or physical level. The main difference between an ontology and a 
KB is that the latter offers reasoning as an addition to the model. Thus, it is not possible to extract 
implicit knowledge from the ontology without the use of reasoning procedures [8]. The term 
‘ontologies’ in the Semantic Web typically refers to two discrete methods of modeling a system’s 
knowledge. 

The first one is RDF (Resource Description Framework) [9], in which, the perception of the world 
is modeled as a graph. The RDF graph is similar to a Directed Labelled Graph, with the difference that 
RDF allows for more than one edge between nodes [10]. The nodes of an RDF graph are not 
necessarily connected to each other and it is allowed to find circle paths in the graph. The nodes of an 
RDF graph contain either resources or literals. The difference between resources and literals is that the 
latter are not subject to further processing by RDF parsers. Hence, RDF, as indicated by its name, is a 
language designed to describe resources. 

A typical and rather widespread example of a semantic extension of RDF is RDF Schema or 
RDFS. RDFS does not impose any further syntactic restrictions; it is intended to provide a specific 
vocabulary – thus restricting the RDF expressivity – in order to be commonly understood. RDFS is the 
first attempt to bring an order to RDF semantics, e.g. defining the isSubclassOf relationship, a 
relationship missing from RDF. In fact, RDF can be viewed as merely the language, while RDFS as 
the vocabulary that portrays how RDF can be used to describe Web content. This is the reason why it 
is usually referred to as RDF(S), a notation that we will also use in the present work. 

The second type of ontologies, contains the ones that have their roots in Description Logics (DL) 
and are usually described in OWL [11, 12], based on standard predicate calculus. Things are more 
complicated than RDF(S) since the world in OWL is viewed as a set of classes, properties and 
individuals. According to [13], the OWL vocabulary V can be defined as a set of literals VL and seven 
sets of URI references: VC, VD, VI, VDP, VIP, VAP and VO that denote the class names, the datatype 
names, the individual names, the data-valued property names, the individual-valued property names, 
the annotation property names and the ontology names, respectively. The OWL language is the 
successor of DAML+OIL and is the current recommendation by W3C. The classification support by 
DL is useful in organizing contexts and context definitions. 

DL is a subset of the First Order Predicate Calculus and is not a fixed language; it rather comprises 
a set of fully defined sublanguages that can be categorized according to their expressive power. The 
basic DL language is AL and allows atomic negation, concept intersection, value restrictions and 
limited existential quantification. In AL, concepts like “persons whose children are all female” can be 
defined. In order to define more complex concepts, we have to add extra constructors e.g. by adding N 
that is number restrictions we get the ALN language, that can express concepts like “persons who have 
more than three children”. By adding nominals to classes (letter O), allowing the declaration of inverse 
properties (letter I) and complex concept negation (letter C), setting a hierarchy in concepts (letter H), 
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the DL that occurs is ALCHOIN. Since S is shorthand for ALC with transitive properties, the resulting 
language containing all these features can be called SHOIN. This language corresponds to the OWL 
DLb language that is widely used in ontologies. This specific subset of DL was chosen because it 
demonstrates excellent behaviour in algorithms that use an OWL DL ontology to deduce implicit 
information. 

Inference services provided by reasoners (e.g. satisfiablility, subsumption, equivalence, 
disjointness, consistency) have reached a certain maturity level; they are usually based on tableaux 
algorithms and are sound and complete. As stated in [8], a Knowledge Base is the combination of an 
ontology and a reasoner. Although many reasoners exist, the practical choice is made among Pellet 
[14], FaCT++ [15], KAON2 [16] and Racer [17]. All of them support DIG [18] interoperability which 
is not a standard yet but it is used by reasoners to exchange HTTP messages with the processes using 
them. 

A KB created using Description Logics consists of two parts. The first part contains all the concept 
descriptions, the intensional knowledge and is called Terminological Box (TBox). The TBox 
introduces the terminology and the vocabulary of an application domain. It can be used to assign 
names to complex descriptions of concepts and roles. The classification of concepts is done in the 
TBox by determining subconcept/superconcept relationships between the named concepts. It is then 
possible to form the subsumption hierarchy. The second part contains the real data, the extensional 
knowledge and is called Assertional Box (ABox). The ABox contains assertions about named 
individuals in terms of the vocabulary defined in the TBox [19]. A naive approach would be to 
consider that the TBox of the ontology corresponds to the schema of the relational database and that 
the ABox corresponds to the schema instance. Unfortunately, things are more complex than that. 

2.3  Relational Models 

According to [20], a database is a collection of relations with distinct relation names. The relational 
database consists of a relation schema and a relation instance. The relation schema consists of the 
schemas for the relations in the database. The relation instance contains the relation instances, whose 
contents are sets of tuples, also called records. Instances can also be thought of as tables, in which each 
tuple is a row. All rows have the same number of fields. Fields’ domains are essentially the type of 
each field, in programming language terms (i.e. string, boolean, integer etc.). Relational databases 
typically, apart from modeling world concepts, also contain additional information such as primary key 
structures, indexes, stored procedures, triggers and security-related information. 

In order to provide access to their contents, databases support many query languages, but SQL is 
the practical choice. SQL, introduced in [21], is undergoing development for more than fifteen years, is 
powerful and provides various means of manipulating relational databases. The inputs and outputs of 
SQL queries are relations. Queries are evaluated using instances of input relations (tables) and produce 
instances of output relations. SQL is said to be relationally complete – since it is a superset of 
relational algebra – meaning that every query that can be posed to a relational algebra can be expressed 
in SQL. In other words, with the use of SQL queries, there is no combination of subsets of tuples in a 
database that cannot be retrieved. 

                                                 
b We note that there is an ongoing attempt to extend OWL expressivity by moving from SHOIN to SROIQ. OWL 1.1 page: 
http://webont.org/owl/1.1/ accessed on 18-11-2007 
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The scope of the ontology to database mapping tools is to provide access to the contents of a 
database through the schema of the ontology. Common approaches, as we will investigate in Section 3, 
describe mapping mechanisms between ontology classes and database tables. From the Semantic Web 
point of view, the mappings are capable of corresponding class individuals (alt. instances) to any 
possible dataset combination, thus significantly extending the storage capability of the ontology. From 
the view of database theory, the database schema structure is enriched in order to include description 
logics and answer queries on a higher semantic level.  

2.4  Mapping Relational Database Contents to Ontologies 

The problem of database-to-ontology mapping is generally regarded as a case of data integration. 
Things can sometimes be confusing in the specific case of mapping relational database contents to 
ontology concepts. The difficulties are based on the heterogeneity between these two information 
storage technologies, since major differences that should be taken into account when considering the 
problem of mapping exist. For instance, a database schema does not provide explicit and formal 
semantics for the data, in contrast to ontologies. Moreover, a database schema is not shareable or 
reusable and it is usually defined for a specific database. On the other hand, an ontology is, by 
definition, reusable and shareable. Another key difference lies in the development approach. The 
development of an ontology is an effort that requires coordination among several persons, while a 
database schema is rarely a result of team-work. 

We could claim that databases are similar to Knowledge Bases because of the fact that they are 
both used to maintain models and data of some domain of discourse [8]. There is, though, a great 
difference, besides the fact that databases manipulate large and persistent models of relatively simple 
data while knowledge bases contain fewer but more complex data. Knowledge bases can also provide 
answers about the model that have not been explicitly stated to it. So, mapping a database to a KB is 
enhancing the database’s ability to provide implicit knowledge by the use of the terminology described 
in the TBox. In the following Section, we provide a survey of approaches that succeed in mapping the 
relational database contents to the contents of the ontology. The description language of choice is 
RDF(S) [9] or OWL-DL [11, 12]. 

Let us define what a mapping is: according to [22], a mapping is the specification of a mechanism 
for transforming the elements of a model conforming to a particular metamodel into elements of 
another model that conforms to another (possibly the same) metamodel. A mapping may be expressed 
as associations, constraints, rules, templates with parameters that must be assigned during the mapping, 
or other forms yet to be determined. In the present paper, a mapping refers to the creation of a 
combination between an ontology model and a database model. 

The general mapping problem can be considered as a special case of data integration: the problem 
of schema matching. In the schema matching problem, we are given a pair of two mutually disjoint 
data sets, the source (local) and the target (global) schema. The idea is to provide a uniform query 
interface over the data that is mediated. As far as data integration is concerned, there are two 
approaches. In the Local-As-View (LAV) setting, the source database is modelled as a set of views on 
the global schema. As local, we refer to local sources or databases and as global we refer to the result 
of the mediated schema. In the Global-As-View (GAV), the global schema is modeled as a set of 
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views over the source schema. The major drawback of the GAV approach is that it is necessary to 
redefine the view of the global schema every time a new source is integrated. 

Theoretically, a Data Integration system is a triple <G, S, M> where G is the global schema, S is 
the source schema and M is a set of assertions that relate the elements of the source schema to the 
elements of the global schema. Generally speaking, the goal of a data integration system is to provide a 
common interface to various data sources, so as to enable users to focus on specifying what they want. 
In our case, the source schema is the schema of the relational database, and the target schema is the 
ontology model. Therefore, the general problem of data integration is reduced to the problem of 
creating correspondences between sets of relational and ontological data. In order to define the general 
problem of database and ontology mapping, we assume an environment where we are given: 

1. An ontology, expressed in a language such as RDF(S) or OWL. The ontology contents can be 
viewed as a graph or as a set of triples. 

2. A relational database instance, whose contents are stored into tuples. 

The general objective is to find mappings and create a set of correspondences relating ontological 
data – predicates in the ontology – and subsets of the relational data – tuples. The idea is illustrated in 
the Figure below. 

 

Fig. 1. The problem of ontology and database mediation can be abstractly depicted as the intermediation of a mapping tool 

between the ontology and the database. 

However, one can easily observe that the SQL DDLs (Data Definition Languages) are more 
expressive than DL languages in some aspects, while the relational databases have a variety of features 
not included in DL implementations. This heterogeneity is covered in the following points: 

• The relational schema may contain further constraints: DEFAULT, NOT NULL, UNIQUE, 
AUTO INCREMENT. 

• The attributes of the relational schema can be assigned using rules that define automatic 
behaviours (triggers): ON INSERT, ON UPDATE, ON DELETE. 

• The majority of the current database implementations incorporate the ability of stored 
procedures and fragments of code that can be executed with the use of SQL. 

• Transactions (START TRANSACTION, COMMIT, ROLLBACK) are widely used in 
commercial applications and in general where security is crucial. 

• Security-related issues in storing and accessing content are still missing from ontologies. 
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All the previously mentioned constructs cannot be mapped to ontologies. We should not forget that 
when the mapping process is completed, the goal is to impose queries to the result of the mapping 
while preserving the initial expressivity. 

We noted earlier that, in a simplified point of view, the schema of a relational database can be 
compared to the TBox of a KB and the schema instance to the ABox. However, there are significant 
differences between Knowledge Bases and databases, the most profound one being the richer 
expressiveness offered by the former. The only relationship that can be expressed in the relational 
model is an IS-A relationship, while the ontological scheme allows for more complex relationships to 
be stated. In fact, the relational model does not provide enough features that could be used to assert 
complex relationships among data. 

Yet another significant difference is the kind of semantics that holds for each schema. The 
relational database schema abides by the so called ‘closed world assumption’. The system’s awareness 
of the world is restricted to the facts that have been explicitly stated to it. Everything that has not been 
stated as true fact is false. In a ‘closed world’, a null value about a subject’s property denotes the non-
existence i.e. a NULL value in the isCapital field of a table Cities claims that the city is not a 
capital. The database answers with certainty because, according to the closed world assumption, what 
is not currently known to be true is false. Thus, a query like ‘select cities that are capitals’ will not 
return a city with a null value at a supposed boolean isCapital fieldc. 

On the other hand, a query on a KB can return three types of answers: true, false and cannot 
tell. The open world assumption states that lack of knowledge does not imply falsity. In this case, 
information that is not explicitly declared as true is not necessarily false, it can also be unknown. 
So a question ‘Is Athens a capital city?’ in an appropriate schema will return ‘cannot tell’ if the schema 
is not informed while a database schema would clearly state false, in the case of a null 
isCapital value. 

2.5  Querying the result: SPARQL vs. SQL 

It can be argued that it is unfair to compare the two languages, yet. On one hand, SPARQL is still 
under design as far as it concerns aspects like its formal semantics, while SQL has been present for 
many years now. SQL is currently a mature, widely used standard, whilst SPARQL still is in its 
infancy and has to evolve significantly to reach SQL’s capabilities. SPARQL [23], formerly known an 
BrQL, is an extension of RDQL and is currently a candidate recommendation for standardizing in the 
W3C. The popular Semantic Web framework Jena uses ARQ, an implementationd of the SPARQL 
query language. We have to mention that in SPARQL, the graph level is not taken into account as in 
other query languages, (e.g. RQL [25], available in the Sesame system [26]), but instead the data is 
modeled as a set of triples. Apart from this feature, SPARQL bears a lot of similarities to SQL, like the 
SELECT FROM syntax; however, although it was designed to have an SQL-like syntax, in its base, it 
can be regarded as simple triple pattern statements. This is because of the nature of the underlying data 
that is typically stored in triples. The differences concerning the selection of data can be summed as 
follows: 

                                                 
c The example is inspired by the one found in http://en.wikipedia.org/wiki/Open_World_Assumption, accessed on 19-11-2007 
d Since query languages for OWL are not mature yet [24], SPARQL is nowadays the most promising solution for querying 
ontology data. A list with SPARQL implementations can be found in http://esw.w3.org/topic/SparqlImplementations, accessed 
on 19-11-2007 
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• In contrast to SQL, SPARQL does not support nested queries. 

• The SELECT WHERE LIKE statement is missing, a practice that is typically implemented in 
keyword-based queries. 

• SPARQL does not implement a similar construct to GROUP BY offered by SQL. 

• Aggregation is also missing, in the form of MIN, MAX, SUM, COUNT or AVG functions. 

Nevertheless, SPARQL embodies a variety of interesting features not present in SQL. A feature 
that can be met in almost all of the query languages for RDF is the use of the OPTIONAL operator that 
does not modify the results in case of non-existence. Moreover, the CONSTRUCT instruction reassures 
that the results will be expressed as an RDF graph and also allows the building of new graphs based on 
the result sets. Finally, SPARQL can extract resource descriptions, using DESCRIBE. This property is 
not fully defined yet but it is designed for future use. In [27], an approach of how to model simple SQL 
queries to SPARQL queries is presented. 

3 Current Practice and Research 

Due to the interdisciplinary nature of the work, namely ontology and database integration, the related 
work is far and wide. Therefore, we have to state explicitly that in our research we did not take into 
account tools or frameworks that allow simple storage of ontology data in a relational database. Similar 
approaches, like 3Store [28], Corese [29], Sesame [26], Kowari [30] or Instance Store [31] are out of 
the scope of the current survey. These tools have in common that the database is used to store 
ontological data but the user does not define mappings; he can only interact with the ontology data 
layer. 

MOMIS [32, 33] deals with the heterogeneous information sources integration problem. It is a 
pool of tools, providing an integrated access to heterogeneous information stored in traditional 
databases or file systems, as well as in semistructured data sources. The system uses ODLI3, an object-
oriented language derived from the standard ODMG (Object Database Management Group), in order 
to represent the semantics underlying the schema. The main components of MOMIS architecture are 
wrappers managing all local information sources, a mediator comprising a global ontology builder and 
a query manager, a tool - called ARTEMIS - performing classification of local ODLI3 classes for the 
synthesis of global ODLI3 classes, and another tool - called ODB-Tools Engine - based on the OLCD 
Description Logics, which infers new relationships between local ODLI3 classes and contributes to the 
generation of a common Thesaurus. The system’s wrappers are placed on top of the information 
sources and are responsible for translating the schema of the source into the ODLI3 language. They also 
perform the translation of a query expressed in the OQLI3 language into a local request executable by 
the query processor of the corresponding source.  The translation of the source schema into the ODLI3 
language is based on the, rather elementary, rules: i) a relation name (e.g. a database table) corresponds 
to an ODLI3 class, and ii) for each relation attribute, an attribute is defined in the corresponding ODLI3 
class. 

Clio [34, 35] is a tool that infers mappings from one set of relational tables and/or XML data to 
another, but, with minor changes, it could be applied to an ontology schema as well. At the core of the 
system are the mapping generation component and the query generation component. The mapping 
generation component takes as input correspondences between the source and the target schemas and 
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generates a schema mapping consisting of a set of logical mappings (declarative assertions, in fact) that 
provide an interpretation of the given correspondences. The query generation component has then the 
role to convert a set of logical mappings into an executable transformation query. Query generation 
consists of a generic module, independent of a particular execution language, and of a number of 
pluggable components that are specific to each execution language: SQL, SQL/XML, XQuery and 
XSLT. At any time during the design, the user can view, add and remove correspondences between the 
schemas through a GUI component and can inspect and edit the generated logical mappings. Clio runs 
a data chase algorithm – introduced in [36] – for the generation of mappings, which are then 
represented with the use of an internal notation-mapping language that includes Skolem functions as 
well. 

One of the few approaches using reverse engineering is the one proposed by Stojanovic et al. [37], 
mapping a given relational schema into an existing ontological structure. They first capture 
information from a relational schema through reverse engineering and, by using a set of mapping rules, 
they analyze the obtained information in order to map database entities to ontological entities. Then, 
they perform evaluation, validation and refinement of the mapping, checking whether all relational 
entities are mapped to corresponding ontological entities and finally, data migration is performed, 
involving the creation of ontological instances based on the tuples of the relational database. KAON-
REVERSE, a tool for semi-automatically connecting relational database to ontologiese, has been used 
in the implementation of this approach, for the automation of the mapping process. 

D2R MAP was first presented in [38] and provides means to declaratively state ontology-to-
database mappings. D2R MAP is based on XML syntax and constitutes a language provided to assign 
ontology concepts to database sets. It allows mappings of complex relational structures to OWL/RDFS 
ontologies, by employing SQL statements in the mapping rules, without having to change the existing 
database schema. More precisely, a mapping is represented by a ClassMap element, containing 
attributes such as SQL (the SQL statement describing the data set), groupBy and uriPattern 
attributes for the creation of ontological instances. Results are extracted in RDF, N3, RDF or Jena [39, 
40] models. D2R MAP can handle highly normalized table structures, where instance data is spread 
over several tables. However, it fails to map low structured databases because of its limited 
expressiveness.  

D2RQ [41] builds on the above concept of D2R MAP, thus retaining the ClassMap element, but 
with a slightly different syntax. D2RQf is implemented as a Jena graph, wrapping one or more local 
relational databases into a virtual, read-only RDF graph. With the use of D2RQ, an application can 
query a non-RDF database using RDQL. D2RQ rewrites RDQL queries and Jena API calls into 
database-specific SQL queries. The result sets of these SQL queries are transformed into RDF triples 
which are passed up to the higher layers of the Jena framework. Since the corresponding mappings 
between the database and RDF are created manually, they have to be rechecked after each evolution of 
the schema. Especially in environments with constantly changing schemas, this is not easily 
manageable. 

                                                 
e http://kaon.semanticweb.org/alphaworld/reverse/view, accessed on 18-11-2007 
f http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/, accessed on 18-11-2007 
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RDF Gatewayg is commercial software having similar functionalities. It connects legacy database 
resources to the Semantic Web via its SQL Data Service Interface. The SQL Data Service translates an 
RDF based query (expressed in RDFQL, a query language the developers have come up with) to an 
SQL query and returns the results as RDF data. However, it uses a native database engine that stores 
data to a single table, according to the vertical table approach, a choice that casts serious doubts on the 
system’s performance, since in this case queries have to search the whole database in order to return an 
answer.  

eD2R (extended D2R) [42] is an extension of D2R MAP, adding operation and condition elements 
expressed in terms of elemental functions allowing the definition of complex and conditional 
transformations on field values and is based on techniques, such as keyword search or natural language 
processing. R2O (Relational to Ontology) [43] is another extensible, declarative, XML-based language 
to describe, expressively enough, mappings between relational DB schemas and ontologies 
implemented in RDF or OWL. Like D2R MAP, R2O allows the definition of explicit correspondences 
between components of two models. R2O is an RDBMS independent high level language that works 
with any DB implementing the SQL standard. An R2O mapping defines how to create instances in the 
ontology in terms of the data stored in the database. The approach suggested by the authors consists of 
creating a mapping description document using R2O with all the correspondences between the 
components of the DB’s SQL schema and those of the ontology. Such mappings are then processed 
automatically by a mapping processor to populate the ontology.  

The Ontomat Application Framework, introduced in [44] was one of the first prototypes for 
database and semantics integration. It was a front-end tool built upon a component-based architecture. 
Ontomat Reverse [45] is part of the framework and offers the means to semi-automatically realize 
mappings (via a set of mapping rules) between ontology concepts and databases through JDBC 
connections. Nevertheless, it only supports RDF graphs and mappings between database tables on the 
server and ontology classes on the client. 

Considering the problem of deep annotation in the Semantic Web, Volz et al. [45] describe a 
framework of metadata creation where Web pages are generated from a database. They consider two 
ways for the deep annotation of the database; directly by annotation of the logical database schema or 
indirectly by annotation of the Web presentation generated from the database contents. We are 
particularly interested in the former case, where the database schema is being mapped into a given 
ontology. For the automation of the mapping process, they use Ontomat Reverse, which automatizes 
some phases in that mapping process, particularly capturing information from the relational schema, 
validation of the mapping process and data migration. More precisely, database relations are mapped to 
ontology concepts if a lexical agreement in the naming exists (using edit distance as a measure), 
attributes are mapped to corresponding datatype properties, if such properties are defined for the 
concept or one of its sub-concepts, and associations between database relations, expressed via foreign 
keys, are mapped to object properties. Nonetheless, the user may refine or remove automatically 
generated mappings or even create new ones. 

A recent solution to the heterogeneous database integration problem has been proposed by Dou 
and LePendu [46] through their OntoGrate architecture, transforming relational schema into 

                                                 
g http://www.intellidimension.com, accessed on 18-11-2007 
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ontological representation, while allowing users define the mappings at the ontological level using 
bridge-axioms. The OntoGrate approach involves ontology-based schema representation, first order 
logic (FOL) inference, and some SQL wrappers. To model database schemas, concepts and the 
relationships (mappings) among them, the authors use the Web-PDDL ontology language, a FOL 
language. The mappings have the form of bridging axioms expressed in Web-PDDL. The SQL 
wrappers lie above the databases and translate FOL queries to SQL queries (by a direct application of 
transformation rules), which are then executed on the appropriate SQL database using JDBC. The SQL 
wrappers also translate the resulting SQL record sets to FOL assertions. 

In order to tackle the problem of mediation, in [47] Dou et al. present PDDSQL, a language that 
automatically translates between SQL and Web-PDDL, a FOL language with a Lisp-like syntax that 
expresses ontologies, data instances (facts), queries and mapping rules between different ontologies. 
The same team has also developed a syntax translator called PDDOWL that can translate OWL-QL 
[48] to Web-PDDL as well. 

Another approach worth mentioning is that of de Laborda and Conrad [27], who, seeking a way to 
make the Semantic Web vision more of a reality, examine whether the combination of 
Relational.OWL as a Semantic Web representation of relational databases and a semantic query 
language like SPARQL [23] could suffice. Relational.OWL is a technique to extract the semantics of a 
relational database and transform it into an RDF/OWL ontology. The data items are represented as 
instances of this data source specific ontology. Relational.OWL, using the techniques provided by the 
Web Ontology Language OWL, defines classes like Table or Column and specifies possible 
relationships among these classes. Thus, an automatic transformation mechanism is created, from data 
stored in relational databases into a representation which can be processed by virtually any Semantic 
Web application. The shortcoming of this approach is that all the relational data have to be stored into 
RDF/OWL format before querying, which would be impractical if the RDBMS contains a huge 
volume of data.  

MAPONTO [49] is a semi-automatic tool that assists users to discover plausible semantic 
relationships between a database schema and an ontology, expressing them as logical formulas. The 
tool - implemented as a tab plugin for the popular ontology editor Protégéh - expects the user to 
provide simple correspondences between atomic elements used in the database schema and those in the 
ontology, in order to generate a list of candidate rules for each individual component in the database 
schema. The main idea underlying MAPONTOi is to represent the ontology as a graph consisting of 
nodes (concepts) connected by edges (properties). Then, the tool finds the minimum spanning tree 
(Steiner tree) connecting the concepts having datatype properties corresponding to table columns, and 
encodes the tree into a logical formula by joining the concepts and properties encountered in it. 
However, the authors do not mention how they deal with schema evolution in the original database. 
Apparently, the corresponding mappings would have to be updated manually. 

Next, we present a comparative overview of the most important approaches mentioned above. In 
Table 1, we specify the ontology language, the RDBMS and the semantic query language supported 
for each tool. Moreover, the degree of automation in the mapping process offered by each tool is 
stated. In Table 2, we state the methodology and techniques followed by each approach, as well as the 

                                                 
h http://protege.stanford.edu/, accessed on 2-11-2007 
i http://www.cs.toronto.edu/semanticweb/maponto/, accessed on 18-11-2007 
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components of the models (ontological and database) that each tool allows to be mapped. The 
capability of consistency checks and the interaction of each tool with the user are also included among 
the criteria. 

Table 1. Classification of the approaches. 

Tool Ontology 
Language 

RDBMS Semantic Query 
Language 

Information needed/Degree 
of automation 

D2RQ RDF, 
DAML+OIL 

Any RDBMS offering 
JDBC or ODBC access 

RDQL Both manual and automatic 

D2R MAP RDF Any RDBMS offering 
JDBC or ODBC access 

None Manual 

Clio N/A Any N/A Semi-automatic 

MOMIS ODLI3 Any OQLI3 Semi-automatic 

R2O RDF/OWL Any SQL-implementing 
RDBMS 

None Manual 

OntoGrate Web-PDDL Any SQL-implementing 
RDBMS 

Web-PDDL Manual 

MAPONTO OWL Any SQL-implementing 
RDBMS 

None Semi-automatic 

Relational.OWL RDF/OWL DB2, MySQL, Oracle Any language that 
can query an 
OWL ontology 

Automatic 

 
Table 2. Classification of the approaches (continued). 

Tool Methodology-
Techniques 

Components 
mapped 

Consistency 
Checks 

User Interaction 

D2RQ Language for 
mappings description 

DB tables, 
columns, 
primary/foreign 
keys 

Yes, through 
the Jena API 

No graphical interface, user 
provides mappings in the form of a 
proprietary language 

D2R MAP XML-based language DB tables, 
columns, keys 

No No graphical interface, user 
provides mappings in the form of a 
mapping language 

Clio Data chase algorithm, 
attribute matching 
algorithm. Mappings 
are described in SQL, 
XQuery or XSLT 

DB tables, 
columns, keys 

No GUI, enabling the user to remove, 
add or edit mappings. Moreover, the 
user must provide correspondences 
between target and source schema. 

MOMIS Affinity calculus, 
clustering techniques, 
use of WordNet 

DB tables and 
columns 

Yes, via 
ODB-Tools 
Engine 

Initial annotation of local sources’ 
schemata, provided by user through 
a GUI. User can intervene at any 
point of the procedure, by adding or 
removing relationships between 
schema elements. 

R2O Ontology populated 
with instances 
according to a set of  
mappings specified by 
the user 

DB tables, 
columns, 
foreign keys 

No No graphical interface, user 
provides mappings in the form of a 
proprietary language 

OntoGrate Mappings described as 
bridging axioms 

DB tables, 
columns, 
integrity 
constraints, keys 

Yes, via the 
OntoEngine 
reasoner 

Query interface 
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MAPONTO Shortest path finding 
between concepts of 
the ontology 

DB tables and 
columns 

No The user should provide 
correspondences between database 
and ontology 

Relational.OWL Creation of one class 
per database 
component mapped 

DB tables, 
columns, 
primary/foreign 
keys, datatypes 

No, ontology 
is described in 
OWL Full 

None 

As it can be seen from the above tables, there is a wide spectrum of approaches in the database and 
ontology collaboration issue, each one using an arbitrary methodology and various techniques. This 
just showcases the evolving nature of this field, emphasized by the lack of a common procedure. In 
order to summarize in a more concise way these approaches, we have formed a simple taxonomy for 
their classification, shown in Figure 2. We should keep in mind, however, that each taxonomy class is 
quite heterogeneous, containing tools that differ substantially from each other in certain aspects.  

The whole set of the approaches in the database and ontology collaboration field can be classified 
into two broad categories, according to whether the user already has in his possession an ontology to 
use. In the first case, where there is a given ontology model that needs to be mapped to a relational 
database schema, approaches such as KAON-Reverse, R2O, Ontomat Reverse and MAPONTO can be 
included. This category of tools can be subdivided itself in two other classes of approaches, one 
defining mappings manually - that would be the case of R2O, in which the user states explicitly 
mappings between the relational schema and the ontology model - and another following a semi-
automatic mapping procedure, as is the case with the rest of the aforementioned tools that are capable 
of detecting some correspondences, using heuristics, measures of lexical proximity and other 
techniques. 

 

Fig. 2. A simple taxonomy of mentioned approaches. 

The second group of approaches does not encompass a given ontology, but instead builds an 
ontology, based on the given relational schema. Tools in this group include, among others, MOMIS, 
D2RQ, OntoGrate and Relational.OWL. Some of these tools use the generated ontology model merely 
as an integration medium between two or more relational schemata, while for the rest of them, the 
generation of an ontology is the ultimate goal, enabling the addition of semantics to data stored in 
relational databases. Whatever the rationale of the whole application is, we can discern two cases of 
ontology model building: semantics driven and structure driven ontology development. Under the 
latter category, we can only include Relational.OWL, which uses predefined ontology classes and 
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properties (e.g. Table, Column, hasColumn) in order to describe just the structure of a relational 
database, hence ignoring the semantics of the relational model. On the contrary, semantics driven 
ontology development is based on the detection of concepts and relationships between them in the 
relational schema and the construction of corresponding ontology classes and properties. This 
construction can either be stated explicitly, thus leading to a manual ontology development - that is the 
case with D2RQ - or it can be carried out semi-automatically, as in MOMIS or OntoGrate, where the 
system proposes certain correspondences and the user can accept or reject them or even add new ones. 

3.1 Proof of concept 

To give an even clearer picture of some of the above tools, we have built a MySQL database called 
‘travel’ and mapped some of its contents to an ontology that contains travel informationj, using the 
tools that were available for public use. Our custom database schema consists of, among others, the 
tables ‘cities’, ‘hotels’, ‘museums’ and ‘activities’ and is populated with data that, plausibly, are 
semantically linked to the domain of the travel ontology. The table ‘activities’ contains information 
about activities offered to tourists, including their description and type (e.g. surfing, hiking), while the 
contents of the rest of the tables can be easily understood, as their names are self-explanatory. This 
example is based on the one illustrated in [50], describing yet another approach in the database-
ontology collaboration problem, which, alas, was deemed quite novice to mention it among the other, 
more complete approaches. 

D2RQ, as mentioned before, is a tool that, in fact, takes as input a database and a document 
containing some mappings and produces as output an ontology. An interesting feature of D2RQ is the 
automation of the generation of a mapping document, if desired by the user. Due to space limitations, 
we are here presenting only the part of the mapping document that refers to table ‘cities’, which has 
three columns, namely ‘id’, which is its primary key, ‘name’ and ‘isCapital’, with a null default value. 
A segment of the mapping of the table ‘cities’ is expressed in D2RQ, as follows, in N3 notation:  

map:cities a d2rq:ClassMap; 
 d2rq:dataStorage map:database; 
 d2rq:uriPattern "cities/@@cities.id@@"; 
 d2rq:class vocab:cities; . 
map:cities__label a d2rq:PropertyBridge; 
 d2rq:belongsToClassMap map:cities; 
 d2rq:property rdfs:label; 
 d2rq:pattern "cities #@@cities.id@@"; . 
map:cities_id a d2rq:PropertyBridge; 
 d2rq:belongsToClassMap map:cities; 
 d2rq:property vocab:cities_id; 
 d2rq:column "cities.id"; 
 d2rq:datatype xsd:int; . 

We can observe that an ontology class named ‘cities’ is created and a datatype property, ‘cities_id’ 
– accordingly for the columns  ‘cities_name’ and ‘cities_isCapital’, whose mappings are not shown 
here – corresponding to the columns of the database table ‘cities’. Moreover, the data stored in the 
database are used to create ontological instances and that is why URI patterns are specified in the 
mapping specification above. An instance of the class ‘cities’ is presented next, again in N3 notation: 

<http://localhost/cities/6> a vocab:cities ; 
       rdfs:label "cities #6" ; 

                                                 
j The travel ontology can be found at: http://protege.cim3.net/file/pub/ontologies/travel/travel.owl. 
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       vocab:cities_id "6"^^xsd:int ; 
vocab:cities_name "Patras" . 

Relational.OWL resembles D2RQ in that it does not require as input an ontology but instead 
builds one, according to some predefined rules with the use of standard classes and properties. 
Relational.OWL does not examine the semantics of the database; it only considers its structure, just 
like D2RQ, when run in automatic mode. Once more, we present only the segment of the generated 
RDF ontology which refers to table ‘cities’: 

<rdf:Description rdf:ID="Cities"> 
  <rdf:type rdf:resource="&dbs;Table"/> 
  <dbs:isIdentifiedBy rdf:resource="#PK0"/> 
  <dbs:hasColumn rdf:resource="#Cities.id"/> 
  <dbs:hasColumn rdf:resource="#Cities.name"/> 
  <dbs:hasColumn rdf:resource="#Cities.isCapital"/> 
</rdf:Description> 
<rdf:Description rdf:ID="Cities.id"> 
  <rdf:type rdf:resource="&dbs;Column"/> 
  <rdfs:domain rdf:resource="#Cities"/> 
  <rdfs:range rdf:resource="&xsd;integer"/> 
  <dbs:length>6</dbs:length> 
</rdf:Description> 
<rdf:Description rdf:ID="Cities.name"> 
  <rdf:type rdf:resource="&dbs;Column"/> 
  <rdfs:domain rdf:resource="#Cities"/> 
  <rdfs:range rdf:resource="&xsd;string"/> 
</rdf:Description> 
<rdf:Description rdf:ID="Cities.isCapital"> 
  <rdf:type rdf:resource="&dbs;Column"/> 
  <rdfs:domain rdf:resource="#Cities"/> 
  <rdfs:range rdf:resource="&xsd;integer"/> 
  <dbs:length>3</dbs:length> 
</rdf:Description> 
<rdf:Description rdf:about="PK0"> 
  <rdf:type rdf:resource="&dbs;PrimaryKey"/> 
  <dbs:hasColumn rdf:resource="#Cities.id"/> 
</rdf:Description> 

The Relational.OWL output bears similarities to the D2RQ output in the number of classes and 
properties created; to be more precise, one class per table and one property per column. In addition to 
this, one class describing the primary key of each table is created as well one class for every foreign 
key in the database, the latter case not being shown here. All these classes are predefined in 
Relational.OWL, thus allowing it to generate an ontology describing the input database schema no 
matter how complicated it may be. Another ontology, linked with the “schema” ontology, is used for 
the storage of the instances created, in order to contain all database data.  An instance of table ‘cities’ 
follows, where the namespace j.0 refers to the “schema” ontology file: 

<j.0:Cities> 
  <j.0:Cities.id>6</j.0:Cities.id> 
  <j.0:Cities.name>Patras</j.0:Cities.name> 
</j.0:Cities> 

R2O differs from both previous approaches, as it constructs mappings between a database and an 
existing ontology. As such a language, it requires description of the database schema in addition to the 
definition of the mappings, thus imposing an additional description overhead for the user. In our 
example, we are trying to map the database table ‘cities’ to the ontology class ‘City’ of the travel 
ontology we mentioned earlier. Moreover, we specify the desired URI of the instances that will 
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populate the ontology. The appropriate database schema description and mapping definition in R2O 
would look like this: 

dbschema-desc 
  name Travel 
  has-table 
    name Cities 
    keycol-desc 
      name id 
      columnType integer 
    nonkeycol-desc 
      name name 
      columnType string 
    nonkeycol-desc 
      name isCapital 
      columnType integer 

ontology http://www.owl-
ontologies.com/travel.owl# 
conceptmap-def 
  name City 
  identified-by Cities.id 
  uri-as 
    concat 
      arg-restriction 
        on-param string1 
        has-value string "City_" 
      arg-restriction 
        on-param string2 
        has-column Cities.name 

Database Schema description in R2O Mapping Definition in R2O 

4 Discussion 

Our research indicates that database to ontology mapping is still a very active domain. Prevalent Web 
trends like blogging, RSS, and the FOAF network provide the Web with new, constantly updated 
material that is often accessed. Furthermore, the emergence of the Semantic Web, made it possible to 
publish and access far more ontologies than knowledge engineers ever thought that it would be 
possible to build [51]. The community of Web Engineering has created so far numerous ontologiesk 
that make the task of handling them as important as developing them. Nevertheless, the current state of 
the art in mapping tools is still in its infancy. 

First of all, automation, an issue of utmost importance, is not adequately supported. Among the 
tools we investigated, only D2RQ [41] and Relational.OWL [27] offered automated mappings. Also, 
we did not see a programmatic API that would enable Web Engineers to author their custom mappings 
in order to construct a seamless mapping layer – with the exception of D2RQ [52]. Moreover, no 
middleware software exists that will offer transparent transaction between the two levels of 
information. 

Another important absence is the support for collaborative authoring of the mapping instructions. 
The tools investigated were all lacking team editing support. It is our conviction that the complicated 
nature of the mapping problem in addition to the distributed architecture of Web systems underlines 
the necessity of team work. Especially when each contributor is an expert on a specific domain, the 
need for a collaboration platform is even greater. 

Relational databases are widely used in real-world scenarios where security is an important issue. 
Practice has affected SQL evolution so as to make it completely safe concerning both user permissions 
and actual data storage. Security is always a headache for Web Engineers because exposure to the 
public requires substantial security mechanisms. It would be very eligible to see an approach taking 
into consideration security-related issues. In our opinion, security should be faced in two levels. First, 
the lack of security entailed by the storage of the ontology is a matter that has to be dealt with and 
second, we would like to see something similar to the connection string, commonly used in the 
database world. D2RQ was the only approach that tried to consider this security issue, by enabling 

                                                 
k Until today, Swoogle [57] has indexed more than 10,000 ontologies. For more detailed and up-to-date statistics visit 
http://swoogle.umbc.edu/index.php?option=com_swoogle_stats, accessed on 18-11-2007 
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conditional mappings. Consequently, only data that satisfy certain conditions can be accessible through 
the ontology, when a conditional mapping is applied, thus allowing the user to preserve the 
confidentiality of his data. 

Among our observations was that database-and-ontology collaboration was preferred to database-
to-ontology migration. All the tools we reviewed fall to the first category, with the exception of 
Relational.OWL [27] that proposes a direct manipulation of the relational data to the RDF/OWL 
format and then the process by a reasoner. In the rest of the tools, the aim is to integrate the data with 
the use of an ontological mapping tool. 

The Semantic Web can be regarded as an open and distributed system. Heterogeneity cannot be 
avoided in such systems. According to [53], heterogeneity can be met in four levels; syntactic, 
terminological, conceptual, semiotic/pragmatic. Several surveys have been provided in the field of 
ontology collaboration, such as [31, 55]. The vision is to create a Web that offers a great deal of 
human-centric services, in contrast to the current monolithic approaches. It should be taken into 
account that interoperability among the various mapping methodologies is an important task. Methods 
and tools should be provided in order to allow interoperability at an even higher level of information 
integration. Then again, the mapped data should be connected to each other in order to implement the 
Semantic Web ultimate goal. 

4.1  Benefits and Drawbacks 

In order for the ontology and database mediation to satisfy real world needs, one has to take into 
account numerous factors. The first thing is to balance between the resources spent and the benefits 
gained. A company that considers a possible adoption of similar technologies would weigh the benefits 
and drawbacks of the proposed integration tool, performing a typical, crucial in decision making, cost-
benefit analysis. 

Among the obvious benefits is that querying the system will be more robust, since it will 
incorporate Semantic Web technologies. However, in order to achieve this goal, we should be aware 
that a single ontology by itself cannot usually cover the needs of a medium or large-scale project and it 
cannot be flexible in implementation, either. Detailed descriptions of the conceptualisation of the 
world usually span over various domains and require technical expertise in many fields. A common 
goal is the unification of Knowledge Representation, in the form of the institution of a common 
vocabulary. The key technologies in the Web Engineering are databases and ontologies. According to 
[1], the majority of the data that lies in the Web is stored in some form of a relational database. We 
assume that the relational schema and the ontology were developed independently, an assumption 
which complicates things. There are usually some parts of the database which are not included in the 
ontology and vice versa. The majority of the current applications is developed ad hoc, thus impeding 
interoperability, integration and collaboration among various systems. 

A representative example of mediocre behaviour is the infamous OpenCyc ontology [56]. The 
project officially began on 1984 by Doug Lenat and is under development until today. The OWL 
version of OpenCyc is a huge file larger that occupies more than 700 MB of space and takes 
approximately 9 hours to load into Protégél. Using Swoogle [57], we found reduced versions of 

                                                 
l www.opencyc.org, accessed on 18-11-2007 
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OpenCyc but this does not solve the problem. OpenCyc has been connected to terms of WordNet [58], 
the open dictionary developed mainly in the Princeton University. Due to its large size, OpenCyc is 
difficult to handle. One can easily map concepts of a custom ontology to concepts in OpenCyc but it is 
difficult to maintain, develop, use and share ontological descriptions of this size. It would be preferable 
to segregate the large ontology into smaller fragments, in order for a community to work parallel on a 
common task. 

Drawbacks include concerns such as the viability of the whole integrated system, an issue that 
arises after the creation of the mapping. It cannot be disputed that in real-world scenarios, the manual 
establishment of mappings between database schemas and ontologies is considered as an additional 
burden in the development process. It is a time-consuming and error-prone task. Moreover, when the 
responsible for the mapping process will have to declare a non-trivial mapping, he will often need 
domain expertise in both the ontological and the relational models. In addition, ontologies and 
databases are subject to changes that can easily cause the mappings to be obsolete or, worse, 
erroneous. Therefore, without some maintenance, a static mapping will not satisfy real-world needs. 
Moreover, it should be taken into account that usually, companies are unwilling to provide 
mechanisms to access their data. In other words, questions that have to be answered include who, how, 
and how often will he or she realise the mappings? 

4.2  Soundness, Completeness and Performance 

Among the issues of major importance in mapping the Web Data is to consider the practical value of 
the result. Information theorists require the result to be sound and complete. A system is sound when 
every answer it returns is valid and complete when it can return answers about the whole extent of its 
knowledge. Nevertheless, as far as practical issues are concerned, it is well known that even reasoning 
with OWL Lite can be of high worst-case complexity [59]. Therefore, while designing, implementing 
or using such a system, one should be aware of its limitations. The current systems have to balance 
between soundness, completeness and performance. 

Generally, results returned to the user are expected to be returned in less than a second. Users 
would rather prefer incomplete results in reasonable time – less than one second – than thorough 
results but having to wait for them. In [47] it is argued that applying a sound but incomplete approach 
seems to be a convincing direction. 

As far as it concerns scalability measurements in the Semantic Web, the standard benchmark 
solution is the Lehigh University Benchmark (LUBM) [60] that has taken a lot of criticism [59] but 
remains nevertheless the practical solution. In [59], the authors claim that, in order to meet real-world 
needs, a reasoning system has to offer a sufficiently expressive query language as well as a flexible and 
efficient communication interface. LUBM suggests an incomplete query answering procedure and 
makes use of information about individuals of a classified TBox, while UOBM [61] extends the 
LUBM in terms of expressivity. This is accomplished by adding extra axioms in the TBox using the 
full expressivity of OWL Lite (UOBM Lite) and OWL DL (UOBM DL). Unfortunately, we did not 
run into any benchmarking measurements for any of the tools presented here, with the exception of 
D2RQ, whose results are presented in [52]. 
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5 Concluding Remarks 

Based on the discussion in this paper and inspired from [62], where Uren et al. set the requirements for 
content annotation, we set the requirements for the ontology to database mapping that should be 
considered when designing the next generation tools. The collaboration between the two different 
technologies, in order to be widespread has to compete with existing methodologies, such as Model 
Driven Engineering (MDE), that already tackle the following issues. The necessity of clearly defining 
the requirements springs from the observation that until today, to our knowledge, the attempts are 
characterized by a rigidity of views and no attempt has been conducted so far to unify them under a 
common vocabulary/standard. Hence, such a proposition should take into account the following 
aspects. 

1. Dynamic changing. Any mapping should be dynamic as it will be subject to frequent 
changes. It should be easily updateable and, even better, it should be automatically updated. The vision 
is to provide a framework that is aware of potentially concurrent changes in both information layers 
and adjusts to them without human intervention. D2R MAP, D2RQ and Relational.OWL offer the 
creation of automated mappings; we should nevertheless comment on the absence of a runtime 
environment where changes in the data sources will be automatically reflected in the result mapping.  

2. User-centered collaborative design. It is a well known fact that ontology authoring is not a 
linear procedure. Usually, an ontology is developed/authored by a group of people because it often 
spans over different conceptual areas. The requirement of collaborative design is emphasized when it 
concerns mappings of a database to an ontology, since every mapping statement demands from the 
author(s) knowledge of the domains of both the database and ontology models. Therefore, unless a 
collaborative approach is adopted, the viability of the system cannot be easily ensured. D2RQ, D2R 
MAP and R2O offer descriptive languages (i.e. vocabularies) in which the mapping can be expressed 
and are thus allowing team work on mapping. We should also mention the API of the commercial tool 
RDF Gateway that allows the mapping procedure to be regarded as code authoring. 

3. Conformity with Standard formats. They should conform to RDF, KIF, OWL and SQL. 
Moreover, it would be better to accept formats besides the RDF/XML notation. Turtle, N3/Notation3 
and N-Triple serializations should also be supported. In [59] it is argued that not only the transmission 
format is important, but also the way the data is encoded. The tools surveyed are all based on 
standardized languages, however, we would favour more complete approaches. In Table 1, the 
columns ‘Ontology Language’, and ‘Semantic Query Language’ present the ampleness of the surveyed 
tools. 

4. Versioning and rollback are crucial procedures, especially in team working. Since neither an 
ontology authoring nor a database designing procedure is a simple linear task, versioning should be 
offered in a way similar to CVS (Concurrent Versions System) or Microsoft VSS that is familiar to 
developers. The tools that offer a GUI constitute monolithic approaches since the user is limited to the 
capabilities of the graphical tool. Contrarily, non-graphical interfaces – descriptive languages such as 
D2RQ, D2R MAP, R2O or APIs such as RDF Gateway – allow concurrent processing, a matter that is 
crucial in commercial environments. 

5. Automation at design-time is very important because manual annotation is typically an 
error-prone and time-consuming task. Companies in general are unwilling to spend resources in order 
to achieve doubtful results.  These two arguments taken into account, the mapping procedure should be 
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automated to the maximum possible extent. The column ‘Information needed/Degree of Automation’ 
in Table 1 illustrates the automation level offered by the described tools. 

6. Completeness. Any system should be able to provide freedom to the authors to capture any 
subset of the underlying information. In other words, anything should be able to be mapped to 
anything. Unfortunately, most of the current tools provide mappings between database tables and 
columns as shown in column ‘Components mapped’ in Table2. We would like to see tools that allow 
more general mapping definitions, such as arbitrary SQL queries. 

7. Reusability of the mappings. The result of the mapping procedure should be easily extended 
and combined to other mappings. Developers should be able to reuse and consolidate fragments or the 
total of their previous work, enhancing its durability. A common mapping language standard – such as 
XMI for XML or KIF for ontologies – would provide an important evolution to this direction and 
would allow interoperability among Web engineers. However, the tools that are implemented as 
graphical applications (Clio, MOMIS, MAPONTO) comprise monolithic approaches that lack 
reusability.  The remainder of the tools allows manual processing but, because of the absence of a 
common standard, the user remains restricted to using the specific tool. 

We would like to point out as well that the Semantic Web scientific area should borrow ideas from 
the database community. First, there is a lot of experience in this field whose results should be 
integrated in the Semantic Web vision. Real world practice has brought up challenges and solutions 
that should be taken into account when designing the next steps. Second, there is a wide society in 
Web Engineering that is unwilling to modify legacy systems that are fully functional and covering 
current needs. Third, there is a lot of expertise in the domain of databases that would be preferable to 
integrate with, rather than migrate to new tools and technologies. 

To sum up, in this paper, we attempted to gather together the most important and contributing 
approaches in the subject of database and ontology collaboration, or mapping as it is frequently cited in 
the text. We tried to provide the reader with a concise overview of these approaches, in a way that the 
comparison between them is easy and straightforward. This effort has revealed that there are mainly 
one or two main ideas, which most of the aforementioned approaches share and try to expand. 
Therefore, we dare to say that efforts in the field have become stagnant and that, maybe, a completely 
novel approach that takes into consideration only few of the points we have highlighted, will render the 
collaboration between ontologies and databases more efficient and simple for the end user. Hence, we 
believe that future progress in this research domain should be closely looked on and this is what we are 
planning to do, incorporating any innovative methods to this work and, of course, more tangible 
measures of comparison, such as extensive benchmarking. 
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