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Abstract—In Behaviour-Driven Development (BDD), the be-
haviour of the software to be built is specified as a set of
example interactions with the system, expressed using a “Given-
When-Then” structure. The examples are written using customer
language, and are readable by end-users. They are also executable,
and act as tests that determine whether the implementation
matches the desired behaviour or not. This approach can be
effective in building a common understanding of the requirements,
but it can also face problems. When the suites of examples grow
large, they can be difficult and expensive to change. Duplication
can creep in, and can be challenging to detect manually. Current
tools for detecting duplication in code are also not effective for
BDD examples. Moreover, human concerns of readability and
clarity can rise. We present an approach for detecting duplication
in BDD suites that is based around dynamic tracing, and describe
an evaluation based on three open source systems.

Index Terms—behaviour-driven development, duplication detec-
tion, dynamic tracing

I. INTRODUCTION

In Behaviour-Driven Development (BDD) [1], the required
software functionality is specified as a collection of example
interactions with the system, expressed using natural language
sentences organised using a “Given-When-Then” structure.
This gives a specification that can be read and understood
by customers. Due to the “glue code” that links the natural
language sentences to the code under test, the examples are also
executable. Thus, the examples both specify the requirements
for the software and act as acceptance tests for the verification
of the implementation against the specification.

Although this approach has many advantages, it also raises
problems. When BDD specifications grow large, they can
become costly to maintain and extend [2]. In the worst case,
functionality can be effectively frozen because of the costs
and risks of changing lengthy BDD suites. The intellectual
effort required to understand hundreds of examples, and how
they relate to one another and to the production code under
construction, is substantial. There is therefore a high cost
for teams when redundancy creeps into their BDD suites.
Execution times will lengthen, increasing the delay between
the creation of software defects and their detection by the BDD
engine. More seriously, maintaining the quality and conceptual
integrity of the specification becomes harder, increasing the
risk that further redundancies, omissions and inelegances will
be introduced. Despite these challenges, studies investigating
the problem are few in number and limited in scope.

We present an approach to detecting duplication in BDD
suites based on an analysis of dynamic traces. Our goal is to
determine when two examples exercise the production code in
the same way. This is challenging because we need to identify
which differences between execution traces are significant, and
which are not. We propose an answer to that question, based
around which we have created a duplication detection tool
for use with BDD specifications written in Gherkin1, with
glue code written using Cucumber-JVM conventions2. The
evaluation of our approach on 3 systems detected more than
70.0% of the injected duplicates, for each of the 3 systems.

II. THE DUPLICATE DETECTION PROBLEM IN BDD

In BDD, the behaviour of a software system is described by
a collection of scenarios, grouped into features. Each scenario
describes an end-to-end interaction with the system, in terms
of concrete data examples. Scenarios are written in a form of
structured English following a “Given-When-Then” pattern. For
example, the following scenario is part of a suite describing
how student final results are calculated:

Given a student scoring 30/70 in the exam
And the student scores 10/30 in the lab

When the final marks are calculated
Then the student’s mark will be 40/100
And the student has passed the unit

These scenarios are made executable by providing “glue
code”—methods annotated with regular expressions matching
the text of the scenario steps. The Java glue code for the first
step in our scenario could be:

@Given("a student scoring (\\d+)/(\\d+)
in the exam")

public void exam(int mark, int total) {
this.student.setExamMark(mark);

}

These methods “glue” the high level scenarios to the production
code. When a scenario is executed, the BDD engine takes
each step and searches for a method with a matching regular
expression. The method is then executed with parameter values
extracted from the step text.

1cucumber.io/docs/reference
2github.com/cucumber/cucumber-jvm
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BDD suites consists of tens, hundreds and (in some cases)
thousands of these scenarios [2]. Adding or changing scenarios
can be challenging. We want to reuse step text patterns as
much as we can, to keep the intellectual cost of understanding
the scenarios down. But we also want scenarios to be natural
to read, using the customer’s preferred domain terms. Tool
support for managing the step collection used in BDD suites
is currently poor, and under time pressure it is easy for teams
to miss opportunities to reuse step text patterns. It can also
be difficult to know whether an example is already present in
the suite, leading to the same or overlapping examples being
specified using different step text patterns. Over time, this leads
to bloated and hard-to-change BDD suites.

Detecting such duplication automatically is challenging. Well
written BDD suites will exhibit high degrees of textual simi-
larity, since step text patterns should be widely reused across
scenarios. Each feature will be described by multiple similar
scenarios, giving different parameter values to indicate different
happy and sad path cases. Whether these scenario “clones” are
redundant or not depends on whether they describe test cases
that are part of the same equivalence class for the code under
test, or whether they come from different equivalence classes.

III. RELATED WORK

Duplicate detection for software artefacts is a well-trodden
area of research. Here, we briefly survey the state of the art,
in order to understand whether duplicate detection in BDD is
supported by existing approaches. Current approaches can be
grouped into those using static analysis of the artefects under
study [3], [4], those using dynamic analysis [5]–[7] and those
using a combination of the two [8].

Duplication detection techniques make use of a variety of
different representations of the artefacts under study, including
token sequences [9], syntax trees [10], [11], program analysis
graphs [12], metrics [13], [14] and strings of characters [15],
[16]. Novakovic [17] and Bellon et al. [18] summarise existing
duplication detection techniques, including comparison as text
artefacts, comparison of sequences of lexical tokens, compar-
ison of vectors of code metrics and comparison of semantic
representations of the artefacts (such as program dependence
graphs [12]).

We focus on detection of duplicates in expressions expressed
using a domain specific language (DSL) that represent tests.
There have been prior attempts to detect duplication in DSLs.
Tairas et al. [19], [20] performed duplication detection on
artefacts developed using the Object Constraint Language3, by
comparing abstract syntax trees (ASTs). This allows syntactic
duplicates to be detected, but not semantic duplicates, when
the meaning of the two artefacts is the same even though the
specific syntactic elements they use to express the functionality
are quite different.

Test Suite Reduction (TSR) techniques [21] also relate to
our problem. But, to the best of our knowledge, existing
TSR techniques focus on unit tests expressed in conventional

3http://lcm.csa.iisc.ernet.in/soft_arch/OCL.htm

programming languages, not acceptance tests expressed in a
DSL, as in BDD. Also, contrary to what most TSR techniques
aim to achieve, we do not want the reduced suite only; we also
want duplicate BDD scenarios to be flagged explicitly.

As regards duplication in BDD suites, we are aware of
only the work of Suan, who used textual and AST similarity
measures to detect syntactic duplicates in Gherkin features [22].
This approach however can only locate duplicates that are
textually similar. To the best of our knowledge, ours is the
first attempt to detect semantically equivalent BDD scenarios.

IV. EXISTING DUPLICATION DETECTION TOOLS

To understand how far existing clone detection techniques
could detect duplicates in BDD suites, we experimented with
three mature duplicate detection tools: PMD/CPD4, CloneDR5,
and DECKARD6. These were selected based on support given
by developers on Stack Exchange, and because they are avail-
able for download and go beyond text-based similarity, as
needed for our context.

Working with a benchmark that we had prepared for evalua-
tion of our own work (described in section VI-A), we manually
identified 13 pairs of duplicate BDD scenarios from 3 systems.
Refer to Table II for more information about the 3 systems.
Since the tools we selected operate on code artefacts and not
on BDD scenarios, we manually unfolded the glue code that
would be executed when each scenario was run, to extract a
code level description of each scenario. We created one method
per scenario (called the scenario-representing method), and put
pairs of methods for duplicate scenarios into classes.

We then ran these classes through the selected tools.
DECKARD and CloneDR were run under default configu-
rations as the alternatives we tried did not show important
differences in terms of the produced results, and we did not
find any study suggesting optimal values. We used 10 as the
minimum token size for PMD/CPD, after some trial and error,
since that was the smallest value that returned any matches
of whole scenarios, as opposed to returning only matches of
partial unfolded glue code. Other token sizes either didn’t give
any result or returned too many false positives while missing
the duplicates that were relevant for our context.

Table I shows the results. We considered a tool to have
detected the duplicate scenarios if it reported their scenario-
representing methods as duplicates of each other. Where only
part of the scenario-representing methods were reported as
duplicates, we considered that the duplication in scenarios was
not detected.

While PMD/CPD and CloneDR were not able to identify
almost any of the duplicates, DECKARD correctly identified
all but 3 of the duplicate scenarios. However, it also identified
a great many false positive duplicates. In our context, each
false positive means that a customer or other member of the
development team will have to examine the pair of scenarios

4pmd.github.io
5http://www.semdesigns.com/Products/Clone/
6https://github.com/skyhover/Deckard
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TABLE I
RESULTS FOR SELECTED CLONE DETECTION TOOLS ON BDD SCENARIOS

System Tool Known
Dupli-
cates

Detected
Known
Dupli-
cates

Candidates Duplicates
Between
Whole
BDD
Scenarios

Detection
for
Known
(%)

Precision
(%)

System 1

PMD 9 0 12 0 0.00 0.00

CloneDR 9 1 6 1 11.11 16.67

DECKARD 9 9 589 112 100.00 19.02

System 2

PMD 1 0 7 0 0.00 0.00

CloneDR 1 0 1 0 0.00 0.00

DECKARD 1 0 43 0 0.00 0.00

System 3

PMD 3 0 8 0 0.00 0.00

CloneDR 3 0 1 0 0.00 0.00

DECKARD 3 1 951 48 33.33 5.05

implicated, and decide whether duplication exists or not. This is
not feasible (or worthwhile) with so many candidates to inspect.
In the case of this investigation, many of the false positives were
reported because of partial duplication between the scenario-
representing methods. The tools had correctly identified code
duplication, but not forms of code duplication that were useful
in identifying BDD scenario duplication.

V. BDD DUPLICATE DETECTION

A. Overall Approach

It seems likely that an optimal solution to this problem will
require a combination of dynamic information from both glue
code and production code, plus analysis of the specific values
used in each scenario (to identify redundant test cases) and
some analysis of the free text elements of the scenarios. But,
at present, the precise kinds of information needed is unknown.
As part of our attempt to discover this, we are exploring various
hypotheses relating to duplicate detection in BDD suites. This
paper presents the results of assessing one such hypothesis.

Since BDD scenarios are primarily examples that specify the
behaviour needed of production code, one view is to regard two
scenarios as duplicates if they exercise the production code
in exactly the same way, and make the same assertions on
the production code state that results. What does it mean to
say that scenarios exercise production code in the same way?
We can compare the dynamic traces for the scenarios, but we
would expect to see some differences and some similarities.
Both traces might use the same values for some parameters,
where they are hard-coded into glue code/test harness code.
Both might vary in some unimportant ways, such as the creation
of objects within the production code that are not visible to the
glue code. These essential and accidental differences need to
be distinguished for successful duplication detection.

We set out to test a simple operation definition based on the
hypothesis that: calls to the public API of the production code
should be highly similar in duplicated scenarios, while calls to
private internal methods within the production code may vary
widely, even in duplicated scenarios. We work with filtered
version of the call traces of the executed scenarios in which
calls to methods which are not part of the public API of the

Algorithm 1: Detecting Semantic Duplication in BDD
Specifications
Input: A BDD suite Σ

A set T of public API traces of the scenarios in Σ
Output: Duplication report
foreach scenario s in Σ do

foreach scenario s′ in Σ (where s′ 6= s) do
t ← public API trace for s in T
t′ ← public API trace for s′ in T
Comp ← A set of already compared scenario

pairs
if ((s, s′) 6∈ Comp and (s′, s) 6∈ Comp) and (t =
t′ or subseq(t, t′) or subseq(t′, t)) then

report s as a semantic duplicate of s′

Comp ← (s, s′) and (s′, s)

system are removed. We call this filtered trace the public API
trace (PAT) of the scenario. Formally, we use pat(s) to denote
the PAT for scenario s.

Definition 1: Given two scenarios s1 and s2 in a BDD suite
Σ, s1 is a semantic duplicate of s2 iff pat(s1 ) = pat(s2 ),
where two traces are considered equal if they describe the
same sequence and number of method calls, and where calls
to inherited methods are considered equivalent to calls to the
methods they override.

B. Algorithm and Implementation

Our implementation works with BDD feature files written in
the Gherkin language, currently among the most widely used
BDD languages [2], [23], with glue code written in Java, using
Cucumber-JVM conventions7. The tool executes each scenario
individually, using AspectJ8 to generate trace information for
the public methods of the code under analysis. Specifically, we
capture: the qualified name of the class on which the method
is defined, the name of the method, the parameter types, and
the return type. The trace is produced as XML and we use
XQuery to search for duplicates. Since BDD suites typically
number in the tens to hundreds [2], we can compare all pairs
of traces in acceptable time scales. The approach is given in
Algorithm 1. For the function subseq(x,y) in Algorithm 1, we
use the XQuery contains(String, String) function9 to establish
whether one sequence of API calls is subsumed into another.

VI. EVALUATION

A. Experiment Design

To evaluate our approach, we needed access to a BDD speci-
fication with known duplicates. Since no benchmarks exist, we
recruited volunteers to inject duplicates into three open source
software systems. We selected systems with sizeable BDD
suites written in Gherkin, with Java glue code. We ruled out

7cucumber.io/docs/reference/jvm
8www.eclipse.org/aspectj
9http://www.xqueryfunctions.com/xq/fn_contains.html
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TABLE II
CHARACTERISTICS OF SELECTED EVALUATION SOFTWARE

Project

S/n Item System 1 System 2 System 3

1 Features 23 8 14

2 Scenarios 142 41 4

3 Scenario Outlines 0 0 23

4 Background steps 21 0 8

5 Packages 76 2 19

6 Production classes 188 8 65

7 Glue Code classes 12 8 14

systems which were trivial demonstration projects or homework
assignments, and focussed on systems in domains which can
be understood based on general knowledge, rather than needing
specialised domain expert input. A further criterion was that we
should be able to execute all scenarios in full, to allow us to
produce traces.

Based on these criteria, we searched the major popular
open source project repositories for potential project. 7 projects
were found with suitable BDD suites, but we could only
execute the suites for 3 of these: jcshs10, Facad Services11,
and ATest12. The jcshs system describes functions to facilitate
interactions between customers of telecoms companies. Facade
Services manages school information about teachers, pupils
and associated services. ATest, amongst other things, facilitates
online purchase of products. We hereafter use System 1, System
2 and System 3 to refer to jcshs, Facad Services and ATest,
respectively. Table II characterises the three systems before
injection of duplicates.

We recruited 13 volunteers for our study, all with at least
3 years experience in development, testing, or analysis and
design or a general understanding of analysis, design and
test-driven approaches. Some were working in industry, while
some were PhD and MSc students with industry experience.
Volunteers were approached physically and through mobile
phone since all were known in person to the authors. They
injected duplicates in two successive phases. In phase one, we
worked with 2 volunteers to pretest the duplication injection
instructions on System 1. Phase two involved the remaining 11
volunteers who were assigned evenly across the 3 systems to
inject duplicates. To make the duplicates as realistic as possible
from this somewhat artificial process, we used a variety of
approaches to acquiring the duplicates. In one, we presented
volunteers with the original scenario titles but without the
scenario itself, and asked them to come up with steps matching
the title. We then showed them the original scenarios but with
the titles removed, and asked them to map their new scenarios
to the originals. In another, we showed volunteers a feature
description and three sample scenarios for it from the original

10https://bitbucket.org/manv6/jcshs
11https://bitbucket.org/mohamrah/facad_services

_cucumber_automated_test
12https://gitlab.com/alexandermiro/atest_bdd

TABLE III
REPORTED DUPLICATES, AND CANDIDATE SETS’ MEMBERS DISTRIBUTION

Known Duplicates Candidates and Distribution

Project Injected Detected % CS OO II IO

System 1 35 25 71.4 55 5 23 27

System 2 20 20 100.0 24 1 11 12

System 3 6 5 83.3 16 2 7 7

system. We asked them to add more scenarios based on these
but covering aspects of the feature not covered by the sample
scenarios. Again, volunteers completed the task by mapping
their new scenarios against the original. Yet, in the other, we
gave complete scenarios and requested volunteers to write their
duplicates by expressing them differently.

Through this process, we obtained 61 known duplicate
scenarios (strictly speaking, 61 pairs of duplicating scenarios)
across the 3 systems. While keeping the functionality of the
original scenarios, the duplicates we obtained through this
process were the result of either rewording of individual steps
in the original scenarios; or rewording or rearranging individual
steps in the original scenarios, or both; or completely rewriting
the original scenarios. There was a good mix of these, reflecting
some of the ways in which duplicate scenarios can manifest
themselves in real projects.

At this stage, the scenarios created by the volunteers could
not be executed since the steps they contained were not matched
by the existing glue code. It was necessary for us to add
step definitions for all the new steps, to make an executable
BDD suite. We were able to create these naturally, without
needing to extend the production code (since we had guided
the volunteers to write scenarios that duplicated the existing
functionality, rather than inventing new requirements that the
existing production code did not support). This gave us the
versions of the 3 host systems with 61 known duplicate pairs,
which could be executed.

B. Results and Discussion

We ran our tool on the suites with injected duplicates. An
interesting feature of the results was caused by the presence
of Background steps in the Gherkin scenarios. Backgrounds
contain the same kind of steps as scenarios (typically Given
steps) but are not executed separately. Instead, they are added
to the beginning of each scenario in the file. They provide
a convenient way to set up common fixture elements for all
scenarios for a feature. Because of this, the traces for all sce-
narios with backgrounds contain the trace for the background
steps. This is not an interesting form of duplication, since it is
embedded in the specification by the writer of the feature file.
We therefore filtered out the traces for the background sections
before searching for duplication.

Table III presents the detected known duplicates, and the
distribution of members of the candidate sets, across the 3 sys-
tems. Column CS gives the candidate set reported by our tool.

9



Column OO gives the number of the candidate set members
reporting duplication between original scenarios (i.e., scenarios
that existed before volunteers injected duplicates). Column II
gives the number of reported duplicates between scenarios
injected by volunteers (i.e., artefacts of the verification process,
and reported for completeness only). Column IO represents the
number of duplicates between injected and original scenarios.
We manually inspected each candidate pair in the OO and IO
categories, to accept or reject them as duplicates and identify
the known false negatives. In this way, we also identified
injected scenarios that unintentionally duplicated multiple sce-
narios in the original suite. Our analysis of each pair in the
OO and IO categories, in all 3 systems, confirmed that it was
reasonable for our tool to flag them as duplicates.

Our approach detected more than 70% of the injected dupli-
cates across the 3 systems. Most of the detected duplicates had
the same sequences of API method calls (notably in System
2). Injected duplicates whose sequences of API calls were
different, because of how the overall scenario functionality was
distributed into steps, and thus affecting the order of execution
of glue and production code, were missed by our algorithm.
(These were mainly observed in Systems 1 and 3).

VII. CONCLUSION

BDD is now used by many software teams to allow them
to capture the requirements for software systems in customer
readable and yet executable form. The resulting sets of concrete
scenarios describing units of required behaviour provides a
form of living documentation for the system under construction.
Unfortunately, management of BDD suites over the long term
can be challenging, particularly when they grow beyond a
handful of features. Redundancy can creep in, leading to
bloated BDD specifications that are costly to maintain and use.

In this paper, we have analysed the problem of duplicates
in BDD suites, highlighted the limitations of existing tools
on it, and described our initial dynamic tracing approach to
detect BDD scenarios that exercise the production code API
in the same way. Our evaluation results show that it detected
the majority of the injected duplicates. In the future, we will
investigate further hypotheses for detecting duplicates. We will
explore what information needs to be added to our traces (for
example, production method arguments and return values) and
will consider approaches that deal with non-determinism in the
scenario code, given the fact that production methods’ runtime
arguments may be decided in a non-deterministic way. We will
also look at including static information from the scenarios,
and combining this with the runtime trace information, to give
more information about which of a pair of duplicates should be
retained, in order to maximise the readability and usefulness of
the BDD suite.
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