
PRIAMOS: A MIDDLEWARE ARCHITECTURE FOR REAL-
TIME SEMANTIC ANNOTATION OF CONTEXT FEATURES

Nikolaos Konstantinou, Emmanuel Solidakis, Stavroula Zoi, Anastasios Zafeiropoulos, Panagiotis
Stathopoulos, Nikolas Mitrou

National Technical University of Athens, Heroon Polytechneiou Str, 15773 Zografou, Athens, Greece
Email:

{nkons;tzafeir}@cn.ntua.gr, {esolid;vzoi;pstath}@telecom.ntua.gr, mitrou@softlab.ntua.gr

Keywords: Real-time, automatic, rule-based, annotation,
semantics, context features, middleware

Abstract

This paper proposes a middleware architecture for the
automated, real-time, unsupervised annotation of low-
level context features and their mapping to high-level
semantics. The distinguishing characteristic of this
architecture is that both low level components such as
sensors, feature extraction algorithms and data sources,
and high level components such as application-specific
ontologies are pluggable to the middleware architecture
thus facilitating application development and system
configuration to different real-world scenarios. A
prototype implementation based on Semantic Web tools is
presented in depth, while the benefits and drawbacks of
this approach are underlined. We argue that the use of
Semantic Web provides powerful answers to context
awareness challenges. Furthermore, it enables the
composition of simple rules through human-centric
interfaces, which may launch a context-aware system that
will annotate content without the need for user technical
expertise.
A test case of system operation in a laboratory
environment is presented. Emphasis is given, along with
the theoretical justification, to practical issues that arise in
real-world scenarios.

1 Introduction

The basic concept of the Semantic Web contribution is
annotation of content in order to become easily
retrievable. This purpose is served by a number of
prevalent Semantic Web technologies like content
description languages, query languages and annotation
frameworks.
Web content of different types is usually annotated with
the use of keywords. Famous corporations follow this
approach such as flickr.com for pictures, del.icio.us for
user bookmarks and youtube.com for video content. Here
it must be noted that annotation is kept separately from the
data, an approach that is also compliant with the Semantic
Web model.

Despite its importance, annotation is not always present
due to several factors. First, it is a time-consuming task
and users do not usually consider it important enough to
spend time annotating the already published content. The
companies on the other hand mostly ‘believe’ that
annotation is a loss of resources in terms of time and
money. Moreover, the reuse of this information is
troublesome as annotation is usually likely to be
redundant, partial or stored in different formats [19]. If we
add to the above that annotation easily becomes out-of-
date then we can easily state that the commercial future of
the Semantic Web is endangered [10].
The automation of the whole annotation procedure will be
a step further to its wider deployment. What we present in
this paper is Priamos, a rule-based middleware system for
real-time annotation of context features, implemented
following Semantic Web standards and cutting-edge web
technologies. The distinguishing characteristic of this
architecture is that both low level components such as
sensors, feature extraction algorithms and data sources,
and high level components such as application-specific
ontologies are pluggable to the middleware architecture
thus facilitating application development and system
configuration to different real-world scenarios.
Furthermore, we demonstrate how we can setup simple
rules through human-centric interfaces in order to launch a
context-aware system that will annotate content without
the need for user technical expertise.
A domain that is not so obviously related to semantic web
is the domain of context-aware systems. We analyze in
section 3 the need in these systems for a high-level
description of the context, of the world according to their
perception. We will see that the semantic description of
the contextual information is the best choice for a number
of reasons. Nevertheless, the approach presented in this
paper is twofold because on the one hand we present a
solution for automated annotation based on Semantic Web
technologies, but on the other hand we combine the
approach with context awareness.
In section 2 we present the latest advances in the field of
context annotation and compare our approach to existing
works in the area of context-aware systems. Section 3
depicts the thinking motive that led to the design and
implementation of the Priamos middleware in its current
form. We continue in chapter 4 analyzing the overall

abstract architecture and the software implementation. In
section 5 we demonstrate a test case of the system,
operating in a laboratory environment. Finally, we
conclude in section 6 by noticing the future directions of
expanding the presented work.

2 Related work and motivation

Generally speaking, there are two kinds of approaches
regarding content – multimedia or not – annotation. The
proposed approaches can be divided in manual or
automated according to whether the annotation requires
human intervention, usually aided by semi-automatic
information extraction algorithms, or the procedure is
fully automated.
The first approach is manual annotation, usually aided by
semiautomatic metadata extraction techniques. This
category contains tools like Vannotea [11] that annotates
collections of images, video, audio or 3D objects and M-
Ontomat Annotizer [13] that is part of the CREAM
framework [1] and one of the major outcomes of the IST
project aceMedia. M-Ontomat can link low-level MPEG-7
visual descriptors with RDF(S) ontologies and offers the
possibility of annotating the Deep Web. COHSE [14] is an
ongoing work that aims at annotating content at retrieval
time, as readers browse the documents, or at authoring
time, as readers author the documents. Amaya, W3C’s
annotation-friendly editor/browser and SMORE [15] for
Web content, also fall to this category.
Automatic annotation systems can be further divided into
two categories: user-centered and pattern- or rule-
centered. User-centered can be divided into supervised
and unsupervised. Users of automatic annotation systems
need to be aware of their limitations, like missing
annotations (known technically as low recall) and
incorrect annotations (known as low precision), and the
trade off against each other.
Supervised approaches include MnM [20] that provides an
environment to manually annotate data, although its initial
design aimed at marking up training data for Information
Extraction tools. Melita [26] is a user-driven automated
semantic annotation tool which is supported by Amilcare,
an information extraction engine. The aim of the project is
to gradually change the role of the user in the annotation
process.
Unsupervised approaches include Armadillo [19] and
KnowItAll [21] that automate information extraction in a
similar way. In the SmartWeb project they are
investigating an unsupervised approach for RDF
knowledge base population1.
As far as it concerns pattern-based and rule-based
approaches, except from Priamos, we can see only a few
approaches in the bibliography. These include
CAFETIERE [25], which is a rule-based system for
generating XML annotations and was developed as part of
the Parmenides project and does not make use of Semantic
Web technologies.

1 Home of the SmartWeb project: http://www.smartweb-project.de/, last
accessed on 25-03-07

From the context-aware point of view, related to the
Priamos concept are systems that use ontological
descriptions to express contextual information. Older
approaches that investigated various aspects of the
context-aware computing, like Ponder, the Context
Toolkit, HP’s CoolTown and the Intelligent Room project
did not use a formal model to represent context
information. Interest in a formal common way of
representing context information has been shown lately.
The IST project CHIL2 is based on multimodal perceptual
user interfaces and aims at supporting human-to-human
interaction. In CHIL the description of the world model is
based on the core vocabulary of the CHIL OWL ontology
for controlling sensors and actuators [24].
The KaOS project [30] uses Description Logics ontologies
as the basis for representing and reasoning about policies.
Nevertheless, application-specific ontologies must be built
on top of the existing ones. The also well-known Rei
framework [31] uses RDF(S) or OWL Lite to represent
context but the specification is limited to the terms of the
Rei Ontology.
From the scope of the pervasive and ubiquitous systems,
we could compare Priamos with CoBrA [33]. Semantic
Web technologies specialized for ubiquitous computing
have also been applied in several environments such as
Masuoka (Task Computing) [34], Gaia [35] and the SoaM
Architecture [36].

3 Using Semantic Web Technologies to
Support Context Awareness

Context means situational information. According to [18],
”Context is any information that can be used to
characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the
interaction between a user and an application, including
the user and application themselves.” A system is context-
aware if it can extract, interpret and use context
information and adapt its functionality to the current
context of use.
The challenge for context-aware systems lies in the
complexity of capturing, representing and processing
contextual data, such as location, ongoing activities etc.
captured by sensors and appropriate software. A common
representation format should be adopted, in order for
different applications to be able to use the same context
information. Thus, to ensure syntactic and semantic
interoperability, we adopt a Semantic Web compliant
approach, that allows us the future aggregation with
various heterogeneous data sources.
As far as context-aware systems are concerned, world
concepts can be described in detail using Semantic Web
technologies. Most of the potential power in this approach
is that a world model can be bound to a reasoner and
deduce implicit knowledge, adding intelligence to the
system. Moreover, we have to notice that context-aware
systems are often complicated enough to the point that
tasks like annotation and decision making, become

2 Home of the CHIL project: http://chil.server.de/, last accessed on 25-
03-07

unmanageable if not supported by automated procedures.
Finally, it is undisputed that the use of middleware
facilitates context representation and processing at the
infrastructure level, better enabling reuse of derived
context by multiple data consumers. Ad hoc formalisms
with insufficiently established semantics make context
aggregation difficult [22].
Consecutively, one of the most challenging issues of
context aware applications is the inclusion of intelligence
while processing the incoming information and deducting
meaning. Below, we analyze the most interesting elements
among Semantic Web technologies that can potentially
play a crucial role in context-aware applications.

3.1 Rule languages

Rules are essential in depicting the desired behaviour of
context-aware systems. It is really convenient that the
model-theoretic background of the OWL language is
based on Description Logics systems that are a subset of
the First Order Predicate Logic. What is gained with the
contextualization of a world model according to
Description Logics is that first, the designed model has
fully defined semantics and second, Horn-like clauses can
be formed upon it. These clauses can be seen as rules that
predefine the desired intelligence in the system’s
behaviour.
RuleML is an implementation of rules used for deduction,
rewriting, and further inferential-transformational tasks. In
general, it is a specification for immediate rule
interchange and can be gradually extended, possibly
together with related initiatives, towards a proposal that
could be submitted to the W3C3. Rules in RuleML are
stated in a combination of natural language and formal
notation. Further purposes of rule markup include the
providing of a rule interchange format for exchanging
rules between different tools/systems, the marking up of
rule content in business documents and the providing of a
high-level specification language for active content in the
Web. Though, very few implementations, like Mandarax
and OO jDrew are available.
SWRL [6], the Semantic Web Rule Language is based on
a combination of the OWL DL and OWL Lite
sublanguages of OWL with the Unary/Binary Datalog
RuleML sublanguages of the Rule Markup Language. The
proposal extends the set of OWL axioms to include Horn-
like rules. SWRL has been implemented as a Protégé
plugin and is shipped with the full version under the name
SWRLTab [27], it has been investigated by projects like
SweetRules4 and it is supported by KAON2 [4], Pellet [5]
and RacerPro reasoners. It has been submitted to W3C for
standardization, no standard has been adopted yet, though,
and the support by reasoners is very limited at the time.
The most significant problem is the freedom in the offered
expressivity by rules that frequently makes it undecidable.
In other words, the subset of a rule language that can be
used to reassure finite reasoning procedures is restricted.

3 The Rule Markup Initiative: http://www.ruleml.org/
4 The SweetRules project along with an extent variety of open source
projects for the Semantic Web is hosted at
http://projects.semwebcentral.org/

The makers of Pellet proposed a subset of safe SWRL
rules [9][29] that assure decidability but the support of
SWRL or RuleML in applications is still an ongoing
procedure.

3.2 The time dimension

Temporal ontologies expand the current ontologies adding
the time dimension. The dimension of time exists in
almost every real-world application. Specifically in the
web services, a timestamp of every transaction is
essential. Having this in mind, the Semantic Web Best
Practices and Deployment Working Group3 developed the
DAML-Time ontology that today evolved to OWL-Time
[17].
OWL-Time is an ontology that provides a vocabulary for
expressing facts about topological relations among
instants and intervals, together with information about
durations, and about date-time information. The concepts
described in this ontology can describe time in web
services, hypertext documents or even custom
applications. In general, the Time ontology contains
concepts like Instant for time instances and Interval
for time intervals. These concepts have properties like
starts , ends , intOverlaps , TimeZone , unitType
and it is an approach that should satisfy most of
applications’ needs.
T-Owl5 is a starting project promising to analyze the
stock market in real-time with the use of temporal
ontologies. A time ontology is presented in [2]. It is
possible to use such an ontology for application-specific
purposes just by embedding it to the application ontology.
The OpenCyc ontology [32] also makes special reference
to time, by including concepts like TemporalThing and
Event . Similarly, time concepts are also supported in the
SOUPA ontology [37].
We underline that the form of the time dimension in
Description Logics, i.e. OWL ontologies, can be added to
the ontology with a simple import of the time ontology.
Thus, such an addition that is a critical issue in context
awareness can be achieved with no extra effort with the
use of Semantic Web technologies.

4 The Priamos middleware architecture

The Priamos middleware architecture comprises a set of
core reusable distributed components for the automated,
real-time annotation of low-level context features and
their mapping to high-level semantics. The main idea is to
launch a procedure that annotates contextual information
upon its appearance. The resulting Knowledge Base will
reflect a spherical perception of the world model.
First of all, the Priamos architecture abstracts the outputs
from heterogeneous, low-level data sources (e.g. sensors,
feature extraction algorithms, content repositories), thus
enabling context capturing in varying conditions. Context
annotation is configured through application-specific
ontologies and is automatically initiated without any
further human intervention.

5 Home of the TOWL Project: http://www.towl.org

Fig. 2: The Priamos middleware architecture

The basic components of the system are the data sources
(e.g. sensors) combined with low-level feature extraction
components (trackers), the user terminals running the
applications, the administration console, and the server
(Fig. 2). The Priamos middleware components are
distributed to all these components, as illustrated in Fig. 2.
The trackers are the first ones to process raw data. Once
initiated, they produce messages containing descriptions
of the features captured from the sensors. Through these
messages, knowledge is transferred to the main Priamos
server and a Knowledge Base is created where all the
features of interest captured by the sensors are gathered.
The architecture does not constrain the system to be used
only for multimedia content. It can as well be used for all
cases where context awareness is crucial, for example to
monitor user clicks in a web environment.
During the design of Priamos we faced the dilemma of
whether to implement a multi-agent system or a
distributed architecture based on web services. Although a
multi-agent system would be as much as flexible and
scalable as the current web services-based implementation
[28], we chose not to restrict further development to the
limitations of a specific agent framework.

4.1 Software modules

The Priamos modular software architecture ensures its
extendibility and adaptation to newer technologies. It
mainly comprises: an exported web service, the message
templates, the ontology models, a set of mapping rules, a
set of semantic rules, the external reasoning server and
finally, the trackers.
Web Service. The Web service module is responsible for
message manipulation. The only requirement is that
messages are expressed in any arbitrary well-formed XML
document. When a message arrives, it is processed by the
mapping rules that the user has entered to describe the

desirable behaviour. In their current form, mapping rules
state simple rules of the form: “if an xml element exists
then insert an individual in one of the ontology classes”.
In this way we can declare a mapping rule that inserts an
individual in a class e.g. Persons every time we receive
an xml containing the element message e.g. Human.
Message Templates. The received messages can conform
to any chosen specifications. As previously mentioned, the
only necessity is that the messages are well formed XML
documents. Message information concerns environment
elements such as person locations or sound volume.
Ontology models. The database model is stored using
Jena[3] internal graph engine. The Jena framework has
developed its own methodology for storing and retrieving
ontology information. In fact, the ontological model is
stored in triples that, in semantic web terms, are called
statements and form the underlying graph of the model.
The annotation is kept in a Knowledge Base, separately
from the incoming data that could be of any form (e.g.
simple text or multimedia). Links to them are stored
making possible a future retrieval.
XML Mapping Rules. The XML Mapping rules fetch
data from the XML message and store it into the ontology
model in the form of class individuals. The rules rely on
the fact that for every XML element there is a unique
XPath expression that retrieves its value. The rules are
formed according to the following pattern:

if condition then action
That is very similar to a Horn clause but, in this case, the
predicates in the head are represented by classes of the
ontology and predicates in the body by nodes of the XML
tree. The approach is similar to the one presented in [23].
In Description Logic terms we could state that the
mapping rules define how the ABox of the Knowledge
Base is populated.
Semantic Rules. The rule-based approach is adopted
because of its extendable and adaptive nature. The current
implementation consists of custom rules for the reasons
discussed in §3.1. The rules here also abide by the above
mentioned condition/action pattern but predicates now are
represented by classes, properties and individuals defined
in the application-specific ontologies. We are currently
working in extending the current implementation keeping
in mind that the expressivity supported by rules can easily
lead to non terminable loops.
The Reasoning Server.. There is a variety of available
reasoners, commercial like RacerPro or OntoBroker, free
of charge like KAON2 [4] and open-source like Pellet [5]
and FaCT++. All of them support DIG [12]
interoperability which is not a standard yet but it is used
by reasoners to exchange HTTP messages with programs
that call them. Jena also supports the binding of an
external reasoner, and provides a less adequate internal
reasoner as well. The previously mentioned reasoners can
function as stand-alone DIG servers and communicate
with Priamos, leaving the reasoner choice up to the user.
Open source reasoners provide the ability of integration in
application code so that developers can embed in their
applications Pellet or FaCT++ gaining a lot in speed.
When the reasoner is integrated to the application there is
no overhead caused by the necessary communication

through HTTP messages between the reasoner and the
application. This approach, though, would restrict Priamos
to a specific reasoner and would diminish our choices. In
our implementation, we used Pellet, a sound and complete
OWL DL reasoner, implemented in Java and based on
optimized tableaux procedures.

4.2 Application description

The tools that are used to handle the various components
are developed in Web environment and they consist of:
the ontology manager, the message template manager, the
action manager, the message to ontology mapper and
finally, the semantic rule composition mechanism.
Ontology manager. The user can upload models to the
system and store them in two forms: in plain text in the
database and using Jena’s persistent storage engine. The
user decides which description language he should use:
RDF(S) [16] or OWL [7]. Priamos ontologies have no
limitation in description and evolution. The only profound
limitation is that using the OWL Full variant of the OWL
language will not be supported by a reasoner. In any other
case, consistency will be guaranteed by the reasoner. We
also note that ontologies, today, are easy to find on the
Web6 and it is usually more convenient to customize an
ontology to an application’s needs than to start authoring
from scratch.
Message template manager. The messages that can be
received are stored locally because they are needed during
the mapping process. The user can add and delete message
templates. Validation is carried out during the insertion to
ensure future unimpeded function.
Action manager. We offer control of the actions that may
be triggered while the semantic rules are processed. The
human-centric approach that we have followed led us to
an implementation adopting the AJAX7 methodology.
Message to ontology mapper. We have developed a
mapping language to allow the composition of rules that
will bind each message to the classes of an ontology. The
administrator can assign mapping rules to specific models.
These rules will be processed one by one upon the arrival
of message and they are responsible for adding the extra
information in the ontology. The mapping interface
displays the ontology hierarchy on the left, the XML tree
on the right and the defining rules underneath.
An example of a mapping rule can order the system to
check whether a specific element exists in an incoming
message. If the check is successful, then the rule
commands the system to insert an individual to a certain
class in the ontology. For example, the rule “if
exists(Message/Tracker/Event/Person) then

insertIndividualIn(foaf:Person) ”, will insert an
individual in the class foaf:Person if the path
Message/Event/Person exists in the message.

6 Among the most reliable sources is the prominent Swoogle
(swoogle.umbc.edu). Noticeable results are also produced with the
filetype:owl or filetype:rdf google operators
7 AJAX, a shorthand for Asynchronous Javascript and XML, is a
development technique for the creation of web applications of increased
interactivity, speed and usability. AJAX can be seen in action in almost
every Google application, such as Gmail, Maps, etc.

Semantic rule composition. The application developer
can define rules that are processed on the model. The
developer does not have to be a domain expert or have
specific knowledge of the underlying infrastructure. An
example of a rule that can be declared is “if
hasIndividuals(DangerousEvent) then

set_alarm ”. In this case, the system will call a
predefined action named alarm (i.e. an external command)
if the check for individuals in the class DangerousEvent
returns true. A graphical authoring tool can be easily
provided based on this rational for the composition of
rules by non-expert users.
Trackers. The trackers are the first ones to process raw
data. They apply special algorithms and techniques to the
signal captured by the sensors (e.g. object/human
detection, face recognition, audio localization) in order to
identify features of interest. Once initiated, the trackers
produce XML messages that describe their awareness of
the world. Through these messages, knowledge is
transferred to the main Priamos server.

4.3 Users and roles in Priamos

Priamos reusable core functions facilitate application
development, in different scenarios and context
configurations. The mapping of low-level features to high-
level semantics enables the definition of different user
roles, according to their experience and technical
background. Since the users are not always domain or
technical experts, it is important to be able to configure
the system through human-centric interfaces. Knowledge
overhead has been an important problem in Semantic Web
applications in the past, making them unsuitable for non-
expert users i.e. ordinary end users who are not
necessarily familiar with domain-specific semantic data or
ontologies.
Users that benefit from Priamos technology are classified
into four categories: system administrators, middleware
maintainers, application developers and end users.
System administrators. They have the overall
supervision of the system’s functions and can configure it
for different operation scenarios. A system administrator
can define features of interest to be captured (e.g. when a
security alert should be triggered) through a high-level
interface.
Middleware maintainers. A maintainer of the system is
the domain expert, burdened with the task of defining the
mapping rules from the incoming messages to the
ontology concepts.
Application developers. They are the mostly benefited
users by the use of the Priamos functions. Instead of
developing application specific code each time, the
application developers can exploit the core middleware
functionality. They can “plug” an ontology, form semantic
rules on the ontology, and define the actions that can be
taken. They have the freedom and the responsibility to
tune the system’s behaviour as wished, through Priamos
provided event handlers and callback functions.
End users. They can be users who are not familiar with
technology at all. They can be simply monitoring a system
operation session (e.g. a guardian in a security-

surveillance scenario, or waiting to receive automated
notifications in form of a sound, an email, a call, an alert
in general (e.g. a mobile user who receives alerts in his
device).

4.4 Message processing cycle

When a message is received, it is first checked for its
XML validity. The middleware poses no extra constraints.
First, the message will be processed by the mapping rules.
All of the mapping rules will be applied to the incoming
message. We note that this procedure can possibly modify
more than one of the models that lie in the database. As a
result of the application of the mapping rules, the
Knowledge Base is updated with the new facts.
Consecutively, the semantic rules are applied. The set of
the semantic rules that correspond to the modified
ontologies is now applied to them. As we noted before,
this set of rules checks the conditions and performs
actions related to the database models, no matter what
were the contents of the XML message. This level of
abstraction was chosen for two reasons, first because it
separates XML mapping from semantic rules, facilitating
the authoring process and second, because this processing
phase can take advantage of the evolution of Semantic
Web rule languages. As depicted in Fig. 3, the data is first
aggregated and adapted and then it is consumed.

Fig. 3: The set of the mapping rules is first applied to each
incoming message. Then, the set of the semantic rules are
applied. As a result, the ontology model is expanded and
the new facts are added to it.

After the message process has terminated, the persistent
model has been updated. All added information is now
stored in the ontology and what follows is the processing
of the ontology itself. The rules are applied one by one
keeping the model up-to-date with its context
environment. New knowledge will potentially be stored at
the database after each message.

5 Test-case scenario

Based on the proposed architecture, we describe below a
use-case scenario of the Priamos middleware when used
to monitor a room and request an alert in case something
“unusual” happens. The environment in our example
consists of a series of cameras and microphones, the

Priamos middleware and the Surveillance application8.
The application developer can configure the system
according to his consideration.
Phase 1: System Bootstrap. The system is activated and
detects automatically the type of devices that are
connected to it (cameras and microphones) as well as their
topology. At the same time this environment is connected
to the appropriate trackers. This process can be executed
periodically or according to the requested needs e.g. when
a new sensor is activated.
Phase 2: The middleware maintainer connects online to
the control panel of the middleware which returns the
trackers that it recognizes, e.g. a tracker for movement
recognition and a tracker for speech-recognition. The
middleware will return the following possible description
for the end-user, in XML format, where the tag properties
are prefixed with the @ character:
Body tracker that recognizes a human body in his visual
range and returns his coordinates:

Message
 Tracker @type
 TimeStamp @value
 DataSource @id @name @url
 person @certainty @id
 location @datasourceId @x @y

In addition, the maintainer has control over the ontologies
of the system. He may have ontologies describing
divergent domains such as activities, security, time,
persons etc. He could as well have one, describing a
variety of concepts like the infamous OpenCyc [32],
although this would slow things enough.
The maintainer will configure the incoming messages to
correspond to ontology concepts. He will assign mapping
rules in the condition/action pattern that we analyzed in
§4.2. Let the example rule: if
Message/Tracker/TimeStamp/@value > “21.00”

then insertIndividualIn(UnusualEvent) , where
UnusualEvent is a hypothetic class in the ontology
model. As a result, after the definition of the set of rules,
the system’s interoperability with the outer environment is
set. It is now the turn of the application developer to
further configure the system.
Phase 3: The application developer confronts an
automatically updating ontology. What he has to set is a
set of rules to manage this growth. The constructors he
uses to state the rules in the ontology contain only
individuals, classes and properties. He can declare a set of
rules, for example in the form: if
hasIndividuals(UnusualEvent) then

contact_me , where contact_me is an action that
executes a shell command, e.g. sendSMS

content=”Something strange is happening” .
After the system has been configured, it is assured that the
end user will receive a notification in case the system
senses an event of interest. This approach has the

8 Not to be confused with external software applications, here by the
term “application”, we note an application built on top of the Priamos
middleware, i.e. the middleware configured for specific sensors,
ontology models and messages syntax

advantage that all users had to spend the minimum effort
to configure the middleware to their needs. The actions
that were taken were: to turn on the system, to map the
incoming messages and to declare the required behaviour
in terms of rules, all through the AJAX-based user-
friendly web interface.

6 Conclusions and Future work

Among our most important observations is that it seems
that two apparently different domains of active research
share in fact many common aspects. The task of
automated annotation in the Semantic Web community is
almost similar to the challenge of contextualizing
information in a common and reusable way in context-
aware systems. It seems that both domains will benefit
from the evolution of Semantic Web technologies. A
common framework for knowledge representation will
enable its (re)use in numerous ways.
The ongoing work presented in this paper aims at
promoting research in the field of semantic annotation and
context-aware systems. We defined the scope of our goals,
discussed about current approaches and emerging
problems and demonstrated an innovative middleware
architecture based on Semantic Web standards.
In the future our goals include the exploitation of
semantically described web services. A description of the
Web Services in OWL-S will offer us more and better-
described actions. Moreover, we will enhance the
semantic rules that apply to the ontology, by updating the
description vocabulary with more complex constructors
and phrases. The extension in the same way will take
place for the mapping rules, as well. It is also our intention
to create a mechanism for offline semantic search of the
stored data. For this purpose we will pay attention to the
daily maintenance of the database data. We are also
currently studying the effect of fuzziness on the events
processed by the system and one of the future extensions
will also be the probabilistic processing of information.
We also take seriously into consideration the extensibility
of our system. We are challenged to provide answers to
questions such as “What happens in case we should attend
more than one parallel sessions in different conferences?
How can we achieve the surveillance of places that are
geographically remote among each other? We are
considering the option of using local agents that will be
responsible for the parallel action of several installed
middlewares. In addition, we are working on real-world
surveillance and smart-room scenarios. Finally, we are
concerned about obtaining our first scalability results.
Priamos will soon be subject of benchmarking
measurements concerning latency in message processing
relevantly to the number and the sizes of the ontologies,
the messages’ rate of arrival and the number and
complexity of mapping and semantic rules.

Acknowledgements

The work presented in this paper is carried out within the
Priamos project, funded by the Hellenic GSRT. The

authors of this paper would like to thank their colleagues
in A.I.T. (http://www.ait.edu.gr/) for their collaboration.

References

[1] S. Handschuh, S. Staab, R. Studer: Leveraging
metadata creation for the semantic web with Cream.
In Proceedings of the Annual German Conference on
AI, Berlin, Germany, 2003.

[2] V. Milea, F. Frasincar, U. Kaymak, T. di Noia: An
OWL-Based Approach Towards Representing Time,
International Workshop on Web Information Systems
Modeling, Trondheim, Norway, 2007

[3] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A.
Seaborne, K. Wilkinson: Jena: Implementing the
Semantic Web recommendations. Technical Report
HPL- 2003-146, Hewlett-Packard, 2003

[4] B. Motik, U. Sattler: A comparison of reasoning
techniques for querying large description logic
ABoxes. Proceedings of the 13th International
Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR 2006), Phnom
Penh, Cambodia, 2006

[5] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, Y. Katz:
Pellet: A practical OWL-DL reasoner. Journal of Web
Semantics, 2006

[6] I. Horrocks, P.F. Patel-Schneider, H. Boley, S.T.
Benjamin, G.M. Dean: SWRL: A Semantic Web rule
language combining OWL and RuleML. World Wide
Web Consortium, Member Submission, 2004

[7] S. Bechhofer, F. van Harmelen, J.A. Hendler, I.
Horrocks, D.L. McGuinness, P.F. Patel-Schneider,
L.A. Stein: OWL web ontology language reference.
World Wide Web Consortium, Recommendation
REC-owl-ref-20040210, 2004

[8] J.R. Hobbs, F. Pan: Time ontology in OWl. Available
at http://www.w3.org/TR/owl-time/, 2006

[9] B. Parsia, E. Sirin, B.C. Grau, E. Ruckhaus, D.
Hewlett: Cautiously approaching SWRL. Available at
http://www.mindswap.org/papers/CautiousSWRL.pdf
, 2005

[10] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M.
Vargas-Vera, E. Motta, F. Ciravegna: Semantic
Annotation for Knowledge Management:
Requirements and a Survey of the State of the Art
Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 4, No. 1, pp. 14-
28, 2006

[11] R. Schroeter, J. Hunter, J. Guerin, I. Khan and M.
Henderson. "A Synchronous Multimedia Annotation
System for Secure Collaboratories", 2nd IEEE
International Conference on E-Science and Grid
Computing (eScience’06), Amsterdam, Netherlands,
2006

[12] S. Bechhofer: DIG 2.0: The DIG Description Logic
Interface, DIG Working Group Note,
http://dig.cs.manchester.ac.uk/, 2006

[13] K. Petridis, D. Anastasopoulos, C. Saathoff, N.
Timmermann, I. Kompatsiaris and S. Staab: M-
OntoMat-Annotizer: Image Annotation. Linking
Ontologies and Multimedia Low-Level Features,

Engineered Applications of Semantic Web Session
(SWEA) at the 10th International Conference on
Knowledge-Based & Intelligent Information &
Engineering Systems (KES 2006), Bournemouth,
U.K., 2006

[14] Y. Yesilada, S. Bechhofer, B. Horan: Personalised
Dynamic Links on the Web, 1st International
Workshop on Semantic Media Adaptation and
Personalization (SAMP), 2006.

[15] A. Kalyanpur, B. Parsia, J. Hendler, J. Golbeck:
SMORE - Semantic Markup, Ontology, and RDF
Editor. Available online at
http://www.mindswap.org/papers/SMORE.pdf, 2005

[16] D. Beckett, RDF/XML Syntax Specification(Revised)
http://www.w3.org/TR/rdf-syntax-grammar/, 2004

[17] J.R. Hobbs, F. Pan: Time Ontology in OWL
http://www.w3.org/TR/owl-time/, 2006

[18] A. Dey: Understanding and Using Context, Journal of
ubiquitous computing, vol. 5, No. 1, pp. 4-7, 2001

[19] J. Iria, F. Ciravegna, Ph. Cimiano, A. Lavelli, E.
Motta, L. Gilardoni, E. Mönch: Integrating
Information Extraction, Ontology Learning and
Semantic Browsing into Organizational Knowledge
Processes. Proceedings of the EKAW Workshop on
the Application of Language and Semantic
Technologies to support Knowledge Management
Processes, at the 14th International Conference on
Knowledge Engineering and Knowledge
Management, Whittlebury Hall, Northamptonshire,
U.K., October 2004

[20] Vargas-Vera M., E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, F. Ciravegna, MnM: A tool for automatic
support on semantic markup, KMi Technical Report
No. 133, September 2003

[21] O. Etzioni, M.J. Cafarella, D. Downey, A.-M.
Popescu, T. Shaked, S. Soderland, D.S. Weld, A.
Yates, Unsupervised named-entity extraction from the
Web: an experimental study, Journal of Artificial
Intelligence, vo1. 65, No. 1, pp. 91–134, 2005

[22] O. Lassila, D. Khusraj: Contextualizing applications
via semantic middleware. Proceedings of the 2nd
annual conference on Mobile and Ubiquitous
Systems: Networking and Services,
(MobiQuitous’05), Washington D.C., USA, 2005

[23] A. Toninelli, R. Montanari, L. Kagal, O. Lassila: A
Semantic Context-Aware Access Control Framework
for Secure Collaborations in Pervasive Computing
Environments. International Semantic Web
Conference (ISWC ’06), Athens, Georgia, 2006

[24] I. Pandis, J. Soldatos, A. Paar, J. Reuter, M. Carras,
L. Polymenakos: An ontology-based framework for
dynamic resource management in ubiquitous
computing environments. 2nd International
Conference on Embedded Software and Systems
(ICESS’05), 2005

[25] W.J. Black, J. McNaught, A. Vasilakopoulos, K.
Zervanou, B. Theodoulidis and F. Rinaldi:
Parmenides TR-U4,.3.1: CAFETIERE: Conceptual
Annotations for Facts, Events, Terms, Individual

 Entities, and Relations, available online at:
http://www.nactem.ac.uk/files/phatfile/cafetiere-
report.pdf

[26] F. Ciravegna, A. Dingli, D. Petrelli, Y. Wilks, User-
system cooperation in document annotation based on
information, Proceedings of the 13th International
Conference on Knowledge Engineering and KM
(EKAW02), Sigüenza, Spain, 2002

[27] M. O’Connor, H. Knublauch, S. Tu, B. Grosof, M.
Dean, W. Grosso, M. Musen: Supporting Rule
System Interoperability on the Semantic Web with
SWRL, 4th International Semantic Web Conference
(ISWC’05), Galway, Ireland, pp. 974-986, 2005

[28] Chmiel, K. et al: Testing the Efficiency of JADE
Agent Platform, 3rd International Symposium on
Parallel and Distributed Computing, Cork, Ireland,
2004

[29] V. Kolovski, B. Parsia, E. Sirin: Extending the
SHOIQ(D) Tableaux with DL-safe Rules: First
Results, International Workshop on Description
Logic (DL-2006), 2006

[30] A. Uszok, J.M. Bradshaw, M. Johnson, R. Jeffers, A.
Tate, J. Dalton, S. Aitken: KAoS Policy Management
for Semantic Web Services, IEEE Intelligent Systems,
19(4), pp. 32-41, 2004

[31] L. Kagal, T. Finin, A. Johshi: A Policy Language for
Pervasive Computing Environment. 4th IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY’03), Lake Como,
Italy, 2003

[32] Niles, I. and Pease, A. Towards a Standard Upper
Ontology. 2nd International Conference on Formal
Ontology in Information Systems (FOIS’01), 2001

[33] H. Chen, T. Finin, and A. Joshi. Semantic Web in in
the Context Broker Architecture. 2nd Annual IEEE
International Conference on Pervasive Computer and
Communications, March 2004

[34] R. Masuoka, B. Parsia, Y. Labrou: Task Computing -
the Semantic Web meets Pervasive Computing, 2nd
International Semantic Web Conference (ISWC’03),
Sanibel Island, Florida, USA, 2003

[35] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, K. Nahrstedt: Gaia: a middleware
platform for active spaces, ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 6,
issue 4, 2002

[36] Juan Ignacio Vazquez, Diego López de Ipiña and
Iñigo Sedano: SOAM: An Environment Adaptation
Model for the Pervasive Semantic Web. 2nd
Ubiquitous Web Systems and Intelligence Workshop
(UWSI’06), pp.108-117, Glasgow, U.K., 2006

[37] H. Chen, F. Perich, T. Finin, A. Joshi: SOUPA:
standard ontology for ubiquitous and pervasive
applications, 1st International Conference on Mobile
and Ubiquitous Systems: Networking and Services,
pp. 258 – 267, 2004

