
Int. J. Ad Hoc and Ubiquitous Computing, Vol. x, No. x, xxxx 1

SensorStream: a semantic real-time stream

management system

Dimitrios-Emmanuel Spanos*, Periklis Stavrou

and Nikolas Mitrou

School of Electrical and Computer Engineering,
National Technical University of Athens,
Zografou 157 73, Athens, Greece
E-mail: dspanos@cn.ntua.gr
E-mail: pstavrou@cn.ntua.gr
E-mail: mitrou@cs.ntua.gr
*Corresponding author

Nikolaos Konstantinou

Athens Information Technology,
19,5km Markopoulo Ave., Peania, Greece
E-mail: nkons@ait.edu.gr

Abstract: As data proliferates at increasing rates, the need for real-time stream processing
applications increases as well. In the same way that Data Stream Management Systems
(DSMS) have emerged from the database community, there is now a similar concern
in managing dynamic knowledge among the Semantic Web community. Unfortunately,
early relevant approaches are, to a large extent, theoretical and do not present convincing
evidence of their efficiency in real dynamic environments. In this paper, we present a
framework for the effective, real-time processing of streaming data and we define and analyse
in depth its key components. Our framework serves as a basis for the implementation
of the SensorStream prototype, on which we run numerous performance and scalability
measurements that outline its behaviour and demonstrate its suitability and scalability for
solutions that require real-time information processing from distributed and heterogeneous
data sources.

Keywords: stream data; sensors; semantic management; data management; ontology;
dynamic knowledge; scalable framework; real-time; windowing; information processing;
distributed sources; heterogeneity; performance measurements.

Reference to this paper should be made as follows: Spanos, D-E., Stavrou, P., Mitrou, N. and
Konstantinou, N. (xxxx) ‘SensorStream: a semantic real-time stream management system’,
Int. J. Ad Hoc and Ubiquitous Computing, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Dimitrios-Emmanuel Spanos received his Diploma Degree in Electrical
and Computer Engineering from the National Technical University of Athens (NTUA)
in 2005 and a Master in Business Administration (MBA) from the Athens University of
Economics and Business (AUEB) in 2007. Since 2007, he is a PhD Candidate in NTUA
and a member of the Multimedia Communications and Web Technologies Research Group.
His research interests lie in the field of Semantic Web and knowledge representation
including, among others, relational database to ontology mapping, semantic annotation of
multimedia content from sensor networks and semantic search in the context of libraries and
open access repositories. He is a member of the Technical Chamber of Greece.

Periklis Stavrou graduated from National Technical University of Athens (NTUA) with a
Dipl-Ing degree in Electrical and Computer Engineering in 2008. Since October 2008, he is
part of the Multimedia Communications and Web Technologies Research Group in NTUA,
working towards his PhD. Among his main research interests are semantic annotation,
data fusion using semantic web technologies and knowledge representation and reasoning in
distributed systems. He is a member of the Technical Chamber of Greece.

Nikolas Mitrou is a Professor in National Technical University of Athens. His research
interests are in the areas of digital communication systems and networks (broadband
networks in particular) and networked multimedia in all range of studies: design,
implementation, modelling, performance evaluation and optimisation. Since 1988, he has

Copyright © 2012 Inderscience Enterprises Ltd.

2 D-E. Spanos et al.

been actively involved in many RACE, ACTS and ESPRIT projects and he was the
coordinator of one of them (AC235, WATT). He is a member of the IEEE, member of the
IFIP WG 6.3 and member of the Technical Chamber of Greece.

Nikolaos Konstantinou received his Engineer Diploma from the National Technical
University of Athens (NTUA), School of Electrical and Computer Engineering (ECE),
in February 2004. In November 2004, after having fulfilled his military obligations he was
accepted as a PhD Candidate in NTUA, School of ECE, Division of Communication,
Electronic and Information Engineering. In December 2009, he successfully defended
his PhD Thesis, entitled ‘Semantic information enrichment in relational databases and
context-aware systems’. During his studies, he participated in a number of nationally
funded research programme while also obtaining valuable experience working as a
Software Engineer. In February 2010, he joined the Athens Information Technology where
he currently works as a Post-doctoral Researcher. His research interests include knowledge
management, context-sensitive systems and information flow in the internet of things.
His research resulted in several publications, with a very encouraging reception in terms of
citations. He is a member of the Technical Chamber of Greece and a member of the IEEE.

1 Introduction

In recent years, technological advancements in
microsensor technology and increasing business
needs have laid the ground for an emerging class of
applications that shift their focus towards data streams.
The availability of large-scale sensor deployments results
in huge, often unbounded, quantities of data generated
by all kinds of sensor devices, calling for efficient
management and storage. In the same time, businesses
seek ways to perform analysis of their data, be it financial,
medical, customer or corporate network data, as soon
as it becomes available, to have an accurate picture of
the market situation and be able to respond in a timely
manner. These needs originally led to the development of
several DSMSs during the last decade (Arasu et al., 2004;
Chandrasekaran et al., 2003; Abadi et al., 2005), so as
to fill the gap left by traditional Database Management
Systems (DBMSs), which cannot deal with continuous,
real-time sequences of data (DSMS). DSMS introduced a
novel rationale that is not based on persistent storage of
all available data and user-invoked queries, but instead
advocates on the fly stream manipulation and permanent
monitoring queries.

In the parallel universe of Knowledge Engineering,
we can see that while reasoners have excelled their
performance with regard to static knowledge, the issue
of reasoning with frequently changing facts and
assertions has not been adequately addressed yet.
Stream reasoning has been coined as a term that
describes the above-mentioned problem (Della Valle
et al., 2009) of performing reasoning on a Knowledge
Base (KB) comprising stable or occasionally changing
terminological axioms and a stream of incoming
assertions or facts. Advances and solutions to this
problem will progressively lead the way for smarter and
more complex applications, including traffic management
and fastest route planning, environmental monitoring,
surveillance and object-tracking scenarios, and disease
outburst detection applications among others.

So far, work in this relatively new field includes
re-definition of the RDF model and enhancements
of current W3C recommendations for time-aware
knowledge representation and querying (Gutierrez et al.,
2007; Pugliese et al., 2008; Rodriguez et al., 2009; Bolles
et al., 2008; Barbieri et al., 2009), incremental reasoning
techniques (Cuenca Grau et al., 2007; Perez et al., 2006;
Volz et al., 2005) and frameworks that use combined
experience from the database and Semantic Web research
fields (Walavalkar et al., 2008; Barbieri et al., 2010).
However, despite the need for working applications
that can manage and query efficiently streaming data,
there is considerable lack of such tools in the literature
since most approaches remain theoretical and fail to
provide evaluation of their performance that will serve as
adequate proof of their utility.

In this paper, we present a generic ontology-
based architecture for the efficient SPARQL querying
of streaming XML data and event recognition. Our
framework does not impose any restriction to the nature
of the incoming data, as long as they are encoded in a
well-formed XML template. Moreover, our framework
can be tailored to any application context according to
the ontology selected for use. Sets of domain-specific
rules define the system’s attitude and the actions to
be taken, when a high-level event is being recognised.
We created the SensorStream prototype on top of Jena
Semantic Web framework (Carroll et al., 2004) as a
working implementation of our architecture and ran
experiments to assess its performance. Results show
that our system is perfectly scalable, has near real-time
response and can handle changes in the terminological
part of the ontology, providing sound inferences
at all times.

The rest of the paper is organised as follows:
in Section 2, some background information on the stream
management problem as well as the motivation behind
our work are presented. Section 3 mentions the related
work, while Section 4 presents in detail our framework.
Section 5 provides an evaluation of the efficiency of

SensorStream: a semantic real-time stream management system 3

our system and the simulation experiments run on.
Finally, Section 6 highlights the conclusions and sketches
out future work.

2 Background and motivation

In general, the issue of efficient management and
querying of dynamic data is related to several research
domains. We have already mentioned that the need
for stream processing had originally arisen within the
database community when it became evident that typical
DBMS could not support applications where data
is dynamic and processing requests are event-driven
rather than human-initiated. Traditional DBMSs are in
effect passive repositories of data that execute queries
on user’s demand, therefore they are inadequate to
handle streaming data of possibly infinite size and
execute continuous queries on them. This has led to the
introduction of several prototype systems (Arasu et al.,
2004; Chandrasekaran et al., 2003; Abadi et al., 2005;
Chen et al., 2000; Liu et al., 1999) that constitute the
groundwork of the recently emerged stream management
problem (Babcock et al., 2002).

In a nutshell, DSMSs, introduce various methods
to overcome the unbounded nature of stream data and
the problems it poses on query execution. Most DSMSs
extend the relational model by including a timestamp
as a label for each relational tuple. This timestamp
can either denote the arrival time of the tuple in the
system or constitute a property of the tuple itself,
e.g., the occurrence time of the event this tuple describes.
The first kind of timestamp is called implicit, whereas
the second one is referred to as explicit. The timestamp
is usually the indicator value acting as a basis for the
formulation of stream data windows. The notion of
windows in stream manipulation tasks is a common one,
since it greatly simplifies query execution by considering
only finite subsets of the entire stream. A window over
a stream is defined as a finite portion of the stream
at some point in time. This portion can be defined in
terms of either time or number of tuples: in the former
case, the window is said to be time-based or logical,
whereas in the latter case, the window is called tuple-
based or physical. The elements of the stream that form
the window change as new stream data becomes available
in a DSMS system.

According to the definitions given in Patroumpas and
Sellis (2006), a logical window for a stream S of tuples is
the set of tuples with timestamps occurring in the [t1, t2]
interval:

wl(S, t1, t2) = {S(τ), t1 ≤ τ ≤ t2}. (1)

On the contrary, a physical window applied at time
instant τ contains the N most recent tuples of a stream:

wp(S, N, τ) = {wl(S, t1, τ) : t1 ≤ τ ∧ |wl(S, t1, τ)| ≤N

∧∀t2 < t1 : |wl(S, t2, τ)| > N}. (2)

Intuitively, the above-mentioned definition specifies t1
as the timestamp of the oldest among the N most
recent tuples and uses it as the start of a logical
window spanning until τ , which denotes the current time
instant.

Depending on the way that windows are updated,
they can be categorised as sliding, tumbling or landmark
windows. Sliding windows have a fixed length and
both their bounds are moving at a predefined interval,
replacing old stream elements with new ones. A sliding
window with size w and progression step d can be
defined as:

wsl(S, w, d, t0, τ)

=

wl(S, t0, τ), t0 ≤ τ ≤ t0 + w and

mod (τ − t0, d) = 0

wl(S, τ − w, τ), t0 + w < τ and

mod(τ − t0, d) = 0

wsl(S, w, d, t0, τ − dt), mod(τ − t0, d) �= 0

(3)

where t0 is the time of the initial application of the
windowing method and τ is the current time instant.
Equation (3) shows that sliding windows are computed
at fixed time intervals d, starting at t0. For intermediate
times, the sliding window stays the same as the one
computed in the preceding time instant (where dt denotes
the time resolution of the system), hence the recursive
nature of the last branch of the definition. Usually,
progression step d is smaller than window size w, leading
to overlaps between two successive sliding windows.

Tumbling windows can be considered as a special case of
sliding windows, where the window is moving at a fixed
interval of length equal to the window size (d = w). Thus,
tumbling windows are pairwise disjoint and do not share
any stream elements:

wtum(S, w, t0, τ) = wsl(S, w, w, t0, τ) (4)

Landmark windows are another type of window, where
the beginning bound tl remains fixed while the other one
is moving, resulting in a variable window size (Arasu
et al., 2006):

wland(S, tl, τ) =

wl(S, tl, τ), τ ≥ tl

0, τ < tl
. (5)

A graphical representation of the above-mentioned
three types of logical windows is shown in Figure 1.
Physical (tuple-based) windows are defined analogously
as their logical counterparts in equations (3)–(5). Besides
the aforementioned rudimentary windowing methods,
semantics of other windowing techniques have been
proposed in the literature, such as the partitioned
window technique (Li et al., 2005), where windows can
be formed according to attributes of interest, and the
much resembling notion of predicate windows (Ghanem

4 D-E. Spanos et al.

Figure 1 Time-based window types: (a) Sliding window with size w and progression step d; (b) tumbling window with size w and
(c) landmark window with lower bound tl

et al., 2006). In our approach, we favour the use of a
sliding physical window, which can be lightly formed and
updated.

Other popular stream-processing techniques include
filtering, punctuation and synopses. Filtering, as the name
suggests, mainly consists of applying criteria for the
selection of a subset of stream elements and ignoring the
rest, while punctuation uses special markers inside the
stream to indicate that the stream elements that have
arrived so far can be partially processed and blocking
operators (e.g., a maximum or a sorting operator) can
be applied to them. Synopses are mere summaries and
aggregations of incoming data, extremely useful when
approximate answers are required. A brief overview of
these techniques is provided in Maier et al. (2005).

Lately, a similar tendency has been observed in
the Semantic Web research community. While the
trade-off between expressive knowledge representation
languages and reasoning complexity has been extensively
documented so far (Baader et al., 2005) and tools
that offer scalable and efficient ontology storage
and reasoning solutions surface at an increasing rate
(Broekstra et al., 2002; Carroll et al., 2004; Das
and Srinivasan, 2009; Erling and Mikhailov, 2010),
the focus has been mainly put on static collections
of data and ontologies. Relatively few methods and
frameworks have been proposed for the processing and
management of dynamic semantic data and ontologies
and even fewer working application examples have
been implemented so far. Such efforts are presented
in the next section.

3 Related work

The lack of working stream processing applications
in the Semantic Web context, pointed out in Section 2,
is partly due to the fact that current popular W3C
recommendations OWL 2 (Motik et al., 2009) and
SPARQL (Prud’hommeaux and Seaborne, 2008) do
not offer satisfactory support for time-evolving data.
Modelling the notion of time is essential, since time is
a primordial factor in dynamic systems and streaming
applications. Considerable effort has been made towards
expanding the RDF model so as to incorporate time.
The most notable efforts to enhance RDF with time
features and provide an adequate respective query
language are presented in Gutierrez et al. (2007), Pugliese
et al. (2008). Another extension of RDF incorporating

the notion of time is presented in Rodriguez et al. (2009),
where every RDF resource considered is time annotated.
An extension of SPARQL is proposed along with the
above-mentioned Time-Annotated RDF extension and
they are both applied in an indicative architecture to store
and query time-varying data. Essentially, this extension
works merely as a synopsis of a more complex RDF
representation that uses few additional proprietary RDF
predicates.

Related efforts that are worth mentioning are the
Time Ontology in OWL (Hobbs and Pan, 2006), which
describes general temporal information and O&M-OWL
(Henson et al., 2009), modelling time series sensor
observations. Likewise, additions to the SPARQL query
language enabling continuous queries over windowed
stream data have been incorporated in the C-SPARQL
(Barbieri et al., 2009) and Streaming SPARQL (Bolles
et al., 2008) approaches. As these approaches define new
languages or update existing ones, they are significantly
different from the work presented here.

Most of the approaches dealing with management
and query processing of streaming data build on the
combination of existing DSMS and experience on
reasoning and storage techniques for static knowledge,
while using some of the aforementioned time-enhanced
languages. To name just one example, Walavalkar
et al. (2008) built on existing mature projects Jena
(Carroll et al., 2004) and TelegraphCQ (Chandrasekaran
et al., 2003) for the reasoning procedure on the static
ontology and stream processing, respectively, to diminish
the processing time of RDF stream messages. The
entire subsumption hierarchy for OWL classes and
properties is computed only once in a preliminary stage,
and stored in a database together with the inference
results from domain and range statements. Then, on
runtime, as RDF statements arrive, new statements
are interpolated in the stream based on the inferences
stored in the system’s database. The performance of
this approach clearly depends on the number of the
initially inferred statements. The underlying assumption
of this work is that all stream messages abide by a
common static ontology schema, making no prevision
for possible changes in the set of ontology axioms.
Another drawback of this approach is the fact that
it utilises the stored inferences for only a pre-specified
class of interest, ignoring stream messages not obeying
this restriction.

A prototype architecture that provides a proof of
concept for the efficiency of the C-SPARQL language

SensorStream: a semantic real-time stream management system 5

in continuous querying of stream data is described
in Barbieri et al. (2010). This architecture combines a
plain SPARQL engine with a DSMS to achieve the
desired functionality. According to the above-mentioned
architecture, every continuous query is split into two
parts: a static and a dynamic one, with the first one
invoking the reasoner to infer new knowledge and
the second one delegating execution to the underlying
DSMS. This implies that reasoning takes place only
once for every continuous query, right after its initial
registration with the system. Thus, any modification in
the terminological part of the knowledge base does not
reflect in the results of a query that has already been
registered.

Semantic Streams (Whitehouse et al., 2006) is a
framework that specifies a predicate-based representation
of sensors and their measurements and allows users
to pose Prolog-like queries. The answers are evaluated
using a backward chaining variant where a goal tree is
constructed and consecutive variable bindings are tried
out until an answer is found. The stream nature of
sensor data seems to be overlooked in this approach,
and no performance tests are provided, though it is
highly unlikely that real-time requirements are satisfied
given that execution of Prolog programs can be highly
inefficient. Another mainly theoretical framework for a
stream-processing middleware is DyKnow (Heintz et al.,
2009), where emphasis is given on stream reasoning
methods and on the devision of a representation language
for policies and processes applied to the incoming
streams.

SensorMasher (Le-Phuoc and Hauswirth, 2009) is a
platform for publishing sensor data as Linked Data
(Bizer et al., 2009), based on a layered architecture,
similar to ours. However, the focus in that work lies on
the exposure of sensor data to the user under different
ways (Web service, HTTP representation, SPARQL
endpoint, etc.) and less on the management aspect and
real-time processing of the incoming stream data.

A context-aware environmental-monitoring system
that relies on a set of rules and a reference ontology to
deduce high-level events from low-level sensor readings
is presented in Calder et al. (2010). This approach
shares several features with our system, nevertheless the

streaming nature of incoming sensor data is neglected
and the performance of the system in relevant dynamic
environments remains unclear. Information extraction
from data that arrives in streams is also performed
by complex event processing architectures (Gyllstrom
et al., 2007; Demers et al., 2007) that define proprietary
query languages for data retrieval. These applications,
though, are only marginally related to our work, since
they lack semantic representation of both incoming
data and application context. Our SensorStream system
borrows ideas from several of the above-mentioned
approaches, building on the previous work in context-
aware middleware (Konstantinou et al., 2010).

4 The SensorStream approach

In this section, we describe a layered architecture for
the efficient real-time processing and reasoning with
stream data. This architecture has served as a basis
for the implementation of our SensorStream prototype
and is depicted in Figure 2. In the rest of this section,
we enumerate the core SensorStream components and
detail on them.

Information sources: Information sources are the content
providers for our system. In this paper, we give
emphasis to streaming sources that constantly provide
new, possibly unbounded, information. Such examples
of information streams include sensor data, clickstream
data, financial data or even network monitoring
messages. Our framework is applicable to all kinds
of streaming data, no matter what its source is.
This suppleness is guaranteed by a common language all
stream messages should adhere to, as explained later.

In some cases, an information source comprises a
sensing device observing its environment and one or more
distributed trackers. Trackers are software components
that process data to extract more meaningful and useful
information. For instance, a tracker can process live
video streams to extract events of interest, such as
in Lien et al. (2007), Zhang and Chang (2002), where the
trackers extract events from baseball video streams, or
in Comaniciu and Meer (1999), Bradski (1998) and Allen

Figure 2 Information flow in SensorStream

6 D-E. Spanos et al.

et al. (2001) where the algorithms deal with the face or
object-tracking problem.

The trackers are considered to be distributed, in the
sense that there is no need of message exchange or
communication between them at any level. A system like
the hereby-presented approach can rely on a number
of distributed trackers without the need of a centralised
coordination, with the exception of a common clock
in cases when this is deemed necessary. In case the
information processed needs to be consistent to a
common clock and present continuity and timeliness, a
time server could be contacted.

Message language and mechanism: The various system
components need to communicate via well-defined
interfaces. Therefore, there is a need of specifying:

1 A common language. In the current case, the
language of choice is XML, to allow interoperability
with any specific tracker. The structure and content
of XML messages can be conveniently tailored to
the needs of any application by complying to
specific schema definitions (XSDs). Thus, we relax
the assumption made by the majority of approaches
– as seen in Section 3 – where incoming stream data
is a set of “ready to be consumed” RDF statements.
This is clearly not the case for real applications and
data generators, which usually do not provide data
coupled with context or other semantic
information.

On the contrary, the assumption that data or
measurements are readily available in XML is not a
far-fetched one, especially in the case of financial or
Web applications’ data. In the case of sensing data,
few developing effort is needed to convert the
custom response format of a typical sensor device
(also known as mote) to an XML template of
choice. Thus, we can assume that such small-scale
XML converters are part of every tracker’s or data
source’s interface with the other framework
components. This renders our framework directly
applicable even to situations when regular motes,
usually forming a wireless sensor network are used
as data providers supporting high-level
applications.

2 Common or well-interoperable technologies.
To establish communication inside a widely
distributed network of heterogeneous devices, one
has many options: the Java Messaging System
(JMS), sockets or Web services to name a few.
In the studied approach, Web services have been
chosen because of the independence from
technologies, portability to any platform, scalability
and maturity of the recommended approaches.
Apache Axis2 and CXF are only a few of the
projects supporting the related W3C
recommendations.1

3 Interfacing. Well-defined and complete
functionality should be exposed to the information
sources and, more precisely, to the trackers. For the
purpose of the current implementation, only one
method is needed, to send the XML message
carrying the information from the trackers to the
server. Additional methods could be applied to send
a server’s response in the form of commands to the
trackers. Such interfacing methods are necessary
when information sources need to receive feedback
from the main processing unit and, hence, adapt
themselves in environmental conditions or intricate
higher-level application needs, possibly expressed
in the form of semantic rules.

Message fusion mechanism: To collect, separate and
thereafter fuse the incoming messages, a wide variety
of approaches exist in the literature. In fact, data
fusion from a variety of sources constitutes a lively
research domain with a variety of open issues and a
highly active community (Liggins et al., 2009). As XML
inherently carries only structural information, to combine
information from multiple sources it is essential to
enhance semantically this information and ensure
semantic interoperability. In the approach presented here,
mapping rules are used to combine information from
multiple sources and leverage its meaning by producing
higher-level information.

To be more specific, the information contained in
the XML stream messages contributes and modifies
the knowledge of the system. Ideally, the intended
behaviour of the system consists of evolving the ontology
representing the knowledge core of the system, according
to the incoming events encoded in XML. To this end,
a set of mapping rules are employed to add statements
to the knowledge base. These rules are formed according
to the following event-condition-action (ECA) pattern
(Papamarkos et al., 2003):

on event if condition then actions

where the event in our case is an XML message arrival
and the condition is applied to the incoming XML
message. These mapping rules fetch data from the XML
message and store it into the ontology model in the
form of class individuals. They are expressed in a custom
language allowing for combination of the XML and RDF
technical spaces, where typical examples of conditions
in the above-mentioned clause include the presence of a
specific XPath expression, whereas actions usually consist
of the addition of individual assertions. These rules
are constructed manually from a user who is aware of
the possible templates of the incoming XML messages
and the ontology structure as well. The full grammar
specification of the mapping rule language and details on
the system’s user interfaces can be found in Konstantinou
et al. (2010).

This design choice automatically raises the limitation
of a single common schema for all stream elements,

SensorStream: a semantic real-time stream management system 7

assumed by other relevant approaches. Different
XML templates can be considered for every distinct
data generator, as long as there is at least one
corresponding mapping rule to handle the ontology
population. An alternative choice for the XML to OWL
transformation would involve application of XSLT
stylesheets to the incoming XML messages, following
the GRDDL approach (Conolly, 2007). Although our
implementation can handle either of these approaches,
for the test scenario presented in this paper, we followed
the mapping rules approach.

Information manipulation: With this term, we refer
to information administering, processing, storing and
exploiting. The technologies that are chosen have to be
able to cooperate smoothly with each other. For instance,
regarding storage, the available options include relational
databases, distributed (NoSQL) databases and semantic
web RDF stores. Respectively, processing and querying
should be done using SQL, keyword-based approaches,2

or SPARQL queries. Therefore, the decisions that have to
be taken regarding the information flow and the related
technologies are greatly affected by the purpose of the
whole attempt.

In the present approach, we follow the Semantic
Web point of view, to study the corresponding
benefits and difficulties. However, such a view entails
the necessity of making a number of additional
choices.

1 The reasoner. We need to be aware that in the
Semantic Web context, reasoning is an issue that
needs to be specifically taken care of. Poor decisions
in the choice of a reasoner, selection of reasoner’s
connectivity method with the application and
in some cases even fine tuning the reasoner can lead
to serious performance degradation. A series
of reasoners are nowadays available in the
bibliography, including FaCT++ (Tsarkov and
Horrocks, 2006), Pellet (Sirin et al., 2007), KAON2
(Maier et al., 2005) and OWLJessKB3 among
others. For the current implementation, the
reasoner chosen is Pellet since it is the one that is
open-source, Java-based, allows integration with the
application’s code, is based on a complete DL
reasoning algorithm but, most importantly, Pellet
has the feature of incremental reasoning, which is
closely related to the characteristics a real-time
system should present. The incremental
classification feature of Pellet allows for improved
performance in cases of frequent axiom
modifications in the KB, given that the classification
hierarchy is incrementally updated instead of being
recomputed from scratch with every axiom change.
Furthermore, incremental consistency checking
ensures that in an environment of continuous ABox
additions or deletions, completion rules are applied
to the updated completion graph and not starting
again from scratch (Halaschek-Wiener et al., 2006).

2 The ontology. The ontology that has to be chosen to
describe the concepts involved in each problem
should be carefully selected while keeping in mind
that a highly expressive ontology entails increased
complexity and additional computational burden
for the reasoning procedure. Thus, among the vast
variety of ontologies available on the Web, special
care needs to be taken in choosing one and tailoring
it to the application’s needs. It is important to note
that we do not consider a standard generic ontology
that covers most application cases, although more
than a few have been proposed in the related
situation awareness literature, e.g., Little and
Rogova (2009), Kokar et al. (2009). As the choice of
the ontology to be used sets the application context,
our framework is kept application-independent and
domain-agnostic.

As we have seen in Section 3, the notion of time is
vital in stream-processing applications. Hence, we
argue that the ontology to be chosen should be able
to describe the time an event or a measurement
took place instead of relying to timestamps that
usually denote the time of arrival of a stream
element. The use of such timestamps does not help
sort out the true sequence of events since the
respective notifications may arrive in disorder owing
to variable delays in the routing from the source
to the receiver. Ensuring that incoming information
is already annotated with its time of occurrence
handling elegantly the infamous event disorder issue
in data streams, under the assumption that all
disparate sources share a common time
reference frame.

3 A semantic ruleset. Generally, the inclusion of a set
of rules encoding the application or domain-specific
knowledge is optional and depends on the
application designer’s choice. In the SensorStream
case, semantic rules are used to recognise events or
situations of interest and perform some action
according to the current application (e.g., issue of
an alert). The form and syntax of these rules
resembles to the one of the mapping rules presented
earlier, with the difference that, in the case of the
former, the condition refers to the ontology model.
Example conditions include checks on the existence
or number of individuals for a given class or checks
on the existence of a non-empty result set for a
given SPARQL query. Therefore, the condition part
of SensorStream’s semantic rules can be replaced by
an appropriate SPARQL/Update query,
guaranteeing that an expressiveness equal to that of
SPARQL is achieved.

Windowing is an important decision that has to be
taken since, by definition, streams are unbounded
and cannot fit in memory to be processed as usual.
Windowing concerns three important decisions that have
to be taken:

8 D-E. Spanos et al.

1 The window measurement unit. This choice refers to
the basic unit serving as the window definition basis.
In this aspect, a window can be either physical or
logical. Physical windows are defined in terms of
physical units, which may be tuples in the case of
DSMS or RDF triples in the Semantic Web context.
Logical windows, on the other hand, as already
stated in Section 2, are typically defined in terms of
time units.

SensorStream follows a different path, by defining
windows in terms of the number of KB individuals
they refer to. This point of view is significantly
different from triple-based physical windows and
offers significant benefits. An individual-based
window may not have a fixed statement length but
instead guarantees that all statements involving an
individual are kept in the current window range.
On the contrary, in the triple-based physical window
case, statements are dropped out of the window
based solely on their timestamp and not on their
relationship with other statements. For example, an
incoming statement might refer to an individual that
participates in older statements already dropped out
of the triple-based window and, hence, knowledge
about it is incomplete. An individual-based window
decreases considerably the degree of incompleteness
by dropping out groups of statements that refer to
the oldest individual in the KB.

An individual-based window is defined over a
stream of RDF triples, where every element of the
stream can be written as (< s, p, o >, τ). We first
introduce the individual timestamp tind for a given
entity s and time τ as the timestamp of its most
recent appearance as subject in some RDF triple of
stream S measured in timestamp τ :

tind(s, τ) = {max(t) : (< s, p, o >, t) ∈ S

∧t ≤ τ} (6)

We then define an individual-based logical window
as the set of the RDF triples that contain as subject
an entity with individual timestamp tind occurring
in the [t1, t2] interval:

w′
l(S, t1, t2) = {(< s, p, o >, τ) ∈ S :

t1 ≤ tind(s, t2) ≤ t2}. (7)

From the above, similarly to equation (2), we can
define an individual-based physical window of size
N as the set of the RDF triples that contain as
subject one of the N most recently appeared
individuals in stream S:

w′
p(S, N, τ) = {w′

l(S, t1, τ) : t1 ≤ τ

∧|w′
l(S, t1, τ)|I ≤ N

∧∀t2 < t1 : |w′
l(S, t2, τ)|I > N} (8)

where | · |I denotes the size in terms of individuals.
The definitions for the sliding, tumbling and
landmark logical windows given in Section 2 can be
adapted to the individual-based case, by replacing
typical tuple-based logical windows wl with
individual-based ones w′

l and expressing window
size w and progression step d as a number of
individuals.

2 The window size: We need to note that the window
size causes a proportional increase in the system
latency and, therefore, these two parameters have to
be balanced accordingly. On the one hand, to
process data in real time we would like to have all
the information available in memory but, on the
other hand, latency should be restricted to
acceptable levels.

3 The window behaviour: In Konstantinou et al.
(2010), a system is investigated where the buffer
is ‘flushed’ after the processing latency exceeded
certain thresholds. This behaviour, although
convenient for a large number of cases, is not
always optimal since maintenance operations
could take place at inconvenient times (e.g., during
the occurrence of an event of interest) leading
to incorrect results. The approach followed
in SensorStream deals with this problem
by maintaining the latest information at
all times.

As we will see in the next section, the application of a
window ensures that the response time stays within some
finite bounds. This, of course, happens at the expense
of the amount and completeness of information stored
in the cache KB, upon which the semantic rules are
applied. This clearly prevents us from declaring rules that
make use of older information and, thus, we rely solely
on the information kept inside the window. Depending
on the application requirements, different choices of the
window size and the amount of information available
at real time can be made. For example, in a person
tracking application taking place in a crowded area,
a window of 100 ontology individuals might prove
insufficient for real time recognition of high-level events,
while the same window would probably be satisfactory
for the real-time monitoring of a natural phenomenon.
This prevents us from establishing a general application
quality metric, although we could risk saying that in most
cases, application quality is positively correlated with the
completeness of information and, therefore, with window
size as well.

Regardless of the window choice, and in contrast
with most systems employing windowing techniques,
SensorStream stores older elements that are dropped out
of the current window in a persistent KB to enable
historical offline queries, as shown in Figure 2.

In brief, the course of actions taken by our
SensorStream prototype as a new information element
arrives is illustrated in Algorithm 1. When a new

SensorStream: a semantic real-time stream management system 9

stream element becomes available, reasoning on the
current instance of the cache KB must be performed
to ensure that all inferences regarding the new element
are computed. Fortunately, the redundancy implied
in reasoning over successive KB instances can be
handled by a reasoner (e.g. Pellet) employing incremental
reasoning techniques. This step is essential to build
a system that is both knowledge-aware and real-time,
given that:

• A simple unprocessed message insertion in the
cache KB does not render the system
knowledge-aware, since no implicit information
can be extracted and added as well, without use
of a reasoner.

• The notion of real-time is tightly coupled with the
concepts of event and response time. More
precisely, according to Dougherty and Laplante
(1995), an event can be defined as ‘any occurrence
that results in a change in the sequential flow of
program execution’ and the response time as ‘the
time between the presentation of a set of inputs and
the appearance of all the associated outputs’.
Therefore, without reloading the entire KB and
performing reasoning on it, we cannot consider that
all the associated outputs are produced and the
system cannot be classified as real-time. Systems
that perform simple insertions upon each message
arrival and scheduled inferencing at predefined time
intervals cannot be considered real-time, only
‘near real-time’ if these intervals are frequent
enough.

After the reasoning procedure is over, the current
snapshot of the window has to be updated to include
the new element and possibly drop older elements,
depending on the type of window chosen. In the same
time, the elements that were dropped out of the window
are moved to the persistent KB for future reference.
Then, the mapping rules are applied to populate the
system’s cache KB. Reasoning and semantic rules’ check
is performed afterwards to spot high-level events. As we
have already mentioned, semantic rules can be replaced
by an equivalent SPARQL query. Since semantic rules
are constantly checked for every incoming element, they
in fact encapsulate continuous queries running against
the temporary cache KB.

5 Performance evaluation

5.1 Measurement environment

For our measurements, we assumed a simple object
tracking application scenario. A data stream in the form
of XML messages containing sensor data is received from
the server for real-time semantic processing and event
recognition. Continuous updates in the ontology carried
out by the execution of the mapping rules allow the KB
to evolve using the information from the data stream
while the semantic rules provide a means for the use of
the complete (initial and inferred) knowledge for rule-
based inferencing, continuous query answering and event
recognition.

The data stream is simulated by means of a client
application that produces and sends at predefined time
intervals XML messages with dummy content that
conform to a specific template shown in the next
subsection.

Our measurements were taken in a lab environment.
The server was an Intel� CoreTM 2 Quad@2.83GHz,
with 3962MB total memory running a x86_64 Ubuntu
9.10 OS. The client was running on an Intel� CoreTM 2
Duo@2.00GHz, with 2012 MB total memory and 32 bit
Ubuntu 9.10 OS. The core components of the Annotation
and Knowledge layers of the SensorStream system were
implemented using Jena 2.6.2, ARQ 2.8.1 and Pellet 2.0.2
libraries, and MySQL 5.1.37 server.

5.2 Measurement methodology

First, we configure the system with a set of initial,
necessary inputs, i.e., the ontology, the mapping rules
and the semantic rules. The ontology used was inspired
from the context awareness domain, including concepts
like , and relevant properties like

, etc. The ontology was designed
to be generic enough to support a system for human
or object tracking in general. Since the development of
a more expressive and richer ontology is out of the
scope of this work, it was kept as minimal as possible,
using only the lightweight ALC(D) Description Logic
language, without General Concept Inclusions (GCIs)
and numbering 31 classes, 3 object properties and 7
datatype properties, in a total of 110 statements.

10 D-E. Spanos et al.

The message template of the incoming XML stream,
as shown here with a message example, includes
information about the location, the time and the
confidence of the measurement.

The XML stream used as the input set for the purpose
of our measurements contains 4000 messages having
the same structure as the above. The mapping rules
for this template and ontology provide the assertion
of an individual of type Human, with the extracted
values from the XML message serving as values
for the datatype properties hasTime, hasXLocation,
hasYLocation, hasCertainty and hasName. The semantic
rule in our measurements scenario is just checking for the
existence of individuals of the Human class and if there
is one or more, it adds exactly one in the Action class.
As the performance of the system highly depends on the
number and the complexity of rules, the rationale behind
the experiments run was, on the one hand, to test the
performance of the system with the presence of all the
features of our architecture but, on the other hand, fully
control the complexity introduced by the rules. Thus, our
mapping rule inserts five statements with every incoming
message: one for the type definition and four for the
assignment of properties’ values, while our semantic rule
leaves the knowledge base intact, with the exception
of the first run when the class of interest contains no
individuals.

For each experiment, the main variable of interest is
latency. Informally, we define latency as the time elapsed
between the transmission of an XML message from the
information source and the execution of the last semantic
rule in this processing cycle. This time period ttotal

consists of processing time tp performed by the system
and, to a smaller extent, message transmission delay ttr
incurred by the network, as shown in equation (9).

ttotal(N) = ttr + tp(N) (9)

tp(N) = ti(N) + tw(N) + tm(N) + ts(N) (10)

Furthermore, tp consists of the initialisation interval ti,
during which the cache KB is loaded into the memory,
the window selection interval tw, when the time bounds

of the window and its contents are updated and, finally,
the mapping and semantic rules execution intervals, tm
and ts, respectively. All the time variables introduced
in equation (10) are functions of the window size N
(in terms of statements). For every experiment run, we
measure the total latency and the process time with
respect to the number of incoming statements, as shown
in the next subsection. We should clarify here that we
restrict ourselves to one scenario, given that our intention
is the comparison of the overall system performance
with respect to different window types and varying
window sizes. A thorough benchmarking of the system
performance for a given window type would involve the
investigation of different scenarios with several different
application cases of mapping and semantic rules, varying
ontology size and number of statements to number of
individuals ratio, and is thus considered out of scope for
the current paper.

5.3 Results

First, we perform a test to assess the system’s behaviour
in the absence of a window. In Figure 3, we illustrate
the system’s behaviour with Pellet, which employs
incremental reasoning techniques to reduce the total
time of the reasoning process. Although this feature of
Pellet reduces, radically, the response time of the server
and its performance is superior to static tableau-based
reasoning algorithms, it still does not suffice for meeting
the real-time requirements in the case of streaming data
since processing time is shown to increase steadily with
the number of statements in the KB. As expected, the
difference between total latency and processing time,
which accounts for the network delay, is small and
constant throughout the entire test.

For this purpose, we employ and study the efficiency
of two windowing approaches, where the size of the
windows used is measured in terms of the number of
individuals stored in the cache KB, as mentioned in
Section 4. We try an individual-based sliding window
with unit advancement step and an individual-based
‘gradually filling’ tumbling window and examine how
their size affects the process time of the system.

Figure 3 Performance and number of statements without windowing. Raw model refers to the initial model while inferred refers
to the model after the reasoning procedure: (a) process time and latency and (b) number of statements

SensorStream: a semantic real-time stream management system 11

The advancement step in the sliding window is also
defined in terms of individuals, in other words as a
new individual becomes available, the sliding window
progresses by excluding statements involving the oldest
individual in the KB and including statements referring
to the new one. A random selection occurs when there
are more than one individuals with the oldest timestamp.
Attention though must be drawn to the fact that
the process of maintaining and constantly updating a
window of the incoming stream in-memory places an
additional burden for the KB and constitutes an overhead
for the system.

The ‘gradually filling’ tumbling window has, like
all tumbling windows, a progression step equal to
the window size, but fills gradually as individuals
arrive to the KB instead of waiting to be completely
filled at once. For ease of representation, we give the
definition of a logical ‘gradually filling’ tumbling window,
which can be easily adjusted for the individual-based
case:

wtum,gf (S, w, t0, τ)

=

wl(S, t0, τ), t0 ≤ τ < t0 + w

wl(S, τ − mod(τ − t0, w), τ),

t0 + w ≤ τ and mod(τ − t0, w) �= 0

wl(S, τ − w, τ), t0 + w ≤ τ

and mod(τ − t0, w) = 0

. (11)

While formulating a window over a stream in DSMS
is a straightforward procedure, the same does not
apply to the case of a KB. The initial formulation
and constant update of the window is performed
with the aid of SPARQL queries that are kept
as lightweight as possible to minimise the overhead
imposed by their execution. For our measurements,
the sliding window was implemented indirectly using
the following SPARQL query to select the older
individual in the KB. All the statements involving
the selected individual are inserted in the persistent
KB and then removed from the cache KB. This
SPARQL query is executed every time a new individual
appears, given the unit progression step of the sliding
window. As mentioned in Section 4, the hasTime
property present in our testing ontology is the property
that time-annotates an individual. In our case, this
annotation refers to the generation time of the incoming
message.

Equivalently, we could have used the following
SPARQL/Update query to perform in one step the
same procedure4. However, this query, more complex as
it is with the use of the OPTIONAL pattern matching

(Perez et al., 2006), takes considerably more time to
execute on Jena’s ARQ engine than the previous one.
Therefore, we decided to stick to the indirect two-step
windowing procedure.

In a similar fashion, for the maintenance of the ‘gradually
filling’ tumbling window, we used the following SPARQL
query to first select all individuals from the cache KB,
copy them to the persistent KB and, finally, remove them
from the cache KB.

In the following set of experiments, we show
in Figures 4 and 5 the performance of the system with
the use of tumbling and sliding windows for sizes of
1000, 5000 and 15,000 triples or 191, 991 and 2991
individuals, respectively. Because of the specific mapping
rules used in the experiment, as explained in Section 5.2,
every individual is involved in five statements, hence
the number of statements is approximately five times
the number of individuals considered. Next to each
performance diagram, we append the evolution of the
number of statements with the number of incoming
messages to clearly show the performance dependency
on the number of statements in the cache KB.

The peaks that are seen in the process time in Figure 4
show that in the case of a tumbling window, when
reaching the window size and entering a new window
computation stage, the time needed to clear the window
contents is much higher than the typical time needed

12 D-E. Spanos et al.

Figure 4 Performance and number of statements for ‘gradually filling’ tumbling window of various sizes. raw model refers to the
initial model while inferred refers to the model after the reasoning procedure: (a) Window size = 191 individulals;
(b) window size = 191 individulals; (c) window size = 991 individulals; (d) window size = 991 individulals; (e) window
size = 2991 individulals and (f) window size = 191 individulals

to process a single message. This delay is caused by
the fact that in this maintenance stage every individual
in the cache KB is deleted and the whole model of
the ontology is affected. Moreover, as we can see in
Figure 4 (a), (c) and (e) and Table 1, the processing time
at the maintenance stage increases at a high and growing
rate, meaning that a tumbling window needs further
improvements to scale for larger data sets. Apart from
the performance, the choice of a tumbling window entails
the possibility of producing a false alarm since, after
a maintenance, the ontology will be back to a pristine
state and all previous information that could possibly
lead to an alarm will no longer be available. Therefore,
the use of such a tumbling window is recommended
in cases where a small loss in captured events
is not crucial.

On the other hand, the behaviour of a sliding window
is more ‘predictable’ and closer to the desired one,
compared with the tumbling window. In Figure 5(a), (b)
and (e), the system shows a stable performance, where
the overhead of computing the new window instance
is kept low regardless of the size of the window. The
average process time, tsl

p , in the case of the sliding
window, as shown in Table 1, increases at a relatively

Table 1 Processing time for tumbling and sliding windows
of varying size (measured in number of statements).
Average gradients are shown in parentheses

Window size ttum
p tsl

p

1000 1250 ms (1.005) 253 ms (0.135)
5000 5270 ms (1.108) 793 ms (0.153)
15000 16348 ms 2306 ms

small and almost stable rate as a function of the window
size. While keeping a stable response, the system is able
to make real-time inferences from the newly asserted
data, providing not only improved performance, but
also more accurate real-time entailments. The peaks that
are seen in the figures are caused by turbulences in the
testing environment, leading to variations in network
delay.

Finally, in Figure 6, the performance of the two
windowing approaches are juxtaposed to the plain no
window approach for the three window sizes considered
to show the superior performance of the sliding window
approach. The above-mentioned results strengthen the
view that a windowing approach over a KB, can be a

SensorStream: a semantic real-time stream management system 13

Figure 5 Performance and number of statements for unit step sliding window of various sizes. Raw model refers to the initial
model while inferred refers to the model after the reasoning procedure: (a) Window size = 191 individulals;
(b) window size = 191 individulals; (c) window size = 991 individulals; (d) window size = 991 individulals;
(e) window size = 2991 individulals and (f) window size = 191 individulals

Figure 6 Comparison of performances for the three methods for various window sizes: (a) Process time, window size = 191
individuals; (b) process time, window size = 991 individuals and (c) process time, window size = 2991 individuals

14 D-E. Spanos et al.

stable solution to Semantic Web applications where time
is a critical parameter. Furthermore, our individual-based
window approach provides hints that Semantic Web
techniques can be applied to exploit stream semantics
and ameliorate application-level quality given the latency
limitation posed by certain real-time applications.

6 Conclusions and future work

As streams of data become increasingly available,
real-time solutions are needed to process and combine
streams to extract high-level events with minimal
human intervention. In this paper, we presented a
semantic-based framework for dealing with information
streams from heterogeneous sources encoded in various
XML templates and its prototype implementation,
SensorStream. Our framework combines consistently a
number of technologies leading to a powerful solution
for the problem of combining semantic information
in real time. SensorStream does not restrict itself to
an application domain, as the ontology encoding the
knowledge of the domain is configurable and can
be selected and tailored to the application needs.
Moreover, it allows for multiple information sources
that store their output in possibly distinct XML
templates. The syntactic heterogeneity of the latter is
handled via mapping rules that populate the domain
ontology with appropriate individuals. We argued that,
given a common time reference frame shared by all
information sources, incorporating the notion of time in
the ontology allows for annotating each event with its
time of occurrence. This design choice differs significantly
from the traditional timestamps of stream management
systems that are able to capture only the time of arrival
of every message to the system, giving rise to the event
disorder problem.

Two windowing techniques that restrict the unbound
stream to a finite stream subset were borrowed from the
related stream management research field in databases
and adjusted accordingly to the KB context. What needs
to be noted though is the fact that we do not drop
the elements that exit the window but we store them
explicitly in a persistent KB to allow for future reuse,
reference and execution of historical queries on them.
Tests were performed for various sizes of these two
window types, namely the sliding and ‘gradually filling’
tumbling window, and the performance of the system was
measured. Results have shown that the sliding window
performs better than the tumbling window and, thus, its
application meets the real-time requirements for semantic
processing of information streams. Average process time
increases, as anticipated, as the applied window grows
larger, but, as the tests suggest, at a lower rate than the
window size increase rate.

Next steps extending SensorStream’s functionality
would include testing of other window types mentioned
in the stream database literature, such as landmark
windows, while we could try to make the appropriate

adjustments to other related techniques that reduce the
volume of a stream, such as filtering or synopses. It would
be interesting to explore how these techniques would
be applied in a KB, taking advantage of the elements’
properties and the relationships linking them to achieve
smarter load shedding. Furthermore, more extensive
tests of our framework could be performed examining
how the ontology’s complexity and size as well as the
complexity of the applied rules affect the overall system’s
performance.

Acknowledgement

Dimitrios-Emmanuel Spanos wishes to acknowledge the
financial support of “Alexander S. Onassis Public Benefit
Foundation”, under its Scholarships Programme.

References

Abadi, D., Ahmad, Y., Balazinska, M., Cetintemel, U.,
Cherniack, M., Hwang, J., Lindner, W., Maskey, A.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y. and
Zdonik, S. (2005) ‘The design of the borealis stream
processing engine’, Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005),
Asilomar, CA, ACM.

Allen, B.D., Bishop, G. and Welch, G. (2001) ‘Tracking:
beyond 15 minutes of thought’, ACM SIGGRAPH 2001
Conference - Course Track, Los Angeles, CA, USA.

Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M.,
Ito, K., Motwani, R., Srivastava, U. and Widom, J.
(2004) STREAM: The Stanford Data Stream Management
System, Technical Report, Stanford InfoLab.

Arasu, A., Babu, S. and Widom, J. (2006) ‘The CQL
continuous query language: semantic foundations and
query execution’, The VLDB Journal, Vol. 15, No. 2,
pp.121–142.

Baader, F., Horrocks, I. and Sattler, U. (2005) Description
Logics as Ontology Languages for the Semantic Web,
Springer, Berlin, Heidelberg, pp.228–248.

Babcock, B., Babu, S., Datar, M., Motwani, R. and
Widom, J. (2002) ‘Models and issues in data stream
systems’, Proceedings of the Twenty-first ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems – PODS ’02, Madison, WI, USA, pp.1–16.

Barbieri, D., Braga, D., Ceri, S., Della Valle, E. and
Grossniklaus, M. (2009) ‘C-SPARQL: SPARQL
for continuous querying’, Proceedings of the 18th
International Conference on World Wide Web, ACM
New York, NY, USA, pp.1061–1062.

Barbieri, D., Braga, D., Ceri, S. and Grossniklaus, M. (2010)
‘An execution environment for C-SPARQL queries’,
Proceedings of the 13th International Conference
on Extending Database Technology, ACM, Lausanne,
Switzerland, pp.441–452.

Bizer, C., Heath, T. and Berners-Lee, T. (2009) ‘Linked data
the story so far’, International Journal on Semantic Web
and Information Systems, Vol. 5, No. 3, pp.1–22.

SensorStream: a semantic real-time stream management system 15

Bolles, A., Grawunder, M. and Jacobi, J. (2008) ‘Streaming
SPARQL – extending SPARQL to process data streams’,
The Semantic Web: Research and Applications, Springer,
Tenerife, Spain, pp.448–462.

Bradski, G.R. (1998) ‘Computer vision face tracking for use in
a perceptual user interface’, Intel Technology Journal, Vol.
2, No. 2.

Broekstra, J., Kampman, A. and van Harmelen, F. (2002)
‘Sesame: a generic architecture for storing and querying
RDF and RDF schema’, in Horrocks, I. and Hendler, J.
(Eds.): Proceedings of the first Int’l Semantic Web
Conference (ISWC 2002), Vol. 2342, Lecture Notes
in Computer Science, Springer Verlag, Sardinia, Italy,
pp.54–68.

Calder, M., Morris, R.A. and Peri, F. (2010) ‘Machine
reasoning about anomalous sensor data’, Ecological
Informatics, Vol. 5, No. 1, pp.9–18.

Carroll, J., Dickinson, I., Dollin, C. and Reynolds, D. (2004)
‘Jena: implementing the semantic web recommendations’,
Proceedings of the 13th International World Wide Web
Conference on Alternate Track Papers & Posters, New
York, USA, pp.74–83.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.,
Hellerstein, J., Hong, W., Krishnamurthy, S., Madden, S.,
Raman, V., Reiss, F. and Shah, M. (2003) ‘TelegraphCQ:
continuous dataflow processing for an uncertain world’,
Proceedings of the Conference on Innovative Data
Systems Research (CIDR 2003), ACM Press, San Diego,
CA, USA.

Chen, J., DeWitt, D., Tian, F. and Wang, Y. (2000)
‘NiagaraCQ: a scalable continuous query system for
internet databases’, ACM SIGMOD Record, Vol. 29, No. 2,
pp.379–390.

Comaniciu, D. and Meer, P. (1999) ‘Mean shift analysis
and applications’, Proceedings of the Seventh IEEE
International Conference on Computer Vision (ICCV’99),
IEEE Computer Society, Kerkyra, Greece, Vol. 2,
pp.1197–1203.

Conolly, D. (2007) Gleaning Resource Descriptions from
Dialects of Languages (GRDDL), Available online at
http://www.w3.org/TR/grddl/

Cuenca Grau, B., Halaschek-Wiener, C. and Kazakov, Y.
(2007) ‘History matters: incremental ontology reasoning
using modules’, in Aberer, K., Choi, K-S., Noy, N.,
Allemang, D., Lee, K-I., Nixon, L., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.
and Cudr-Mauroux, P. (Eds.): Proceedings of the 6th
International Semantic Web Conference (ISWC 2007),
Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, Vol. 4825, pp.183–196.

Das, S. and Srinivasan, J. (2009) ‘Database technologies
for RDF’, 5th International Summer School 2009 on
Reasoning Web. Semantic Technologies for Information
Systems, LNCS 5689, pp.205–221.

Della Valle, E., Ceri, S., van Harmelen, F. and Fensel, D. (2009)
‘It’s a streaming world! reasoning upon rapidly changing
information’, Intelligent Systems, IEEE, Vol. 24, No. 6,
pp.83–89.

Demers, A., Gehrke, J., Panda, B., Riedewald, M. and
Sharma, V. (2007) Cayuga: A General Purpose Event
Monitoring System, Proceedings CIDR, ACM Press, New
York, New York, USA, pp.412–422.

Dougherty, E. and Laplante, P. (1995) Introduction to Real-
Time Imaging, SPIE Press, Bellingham, WA, USA.

Erling, O. and Mikhailov, I. (2010) Virtuoso: RDF Support in a
Native RDBMS, Springer, Berlin, Heidelberg, pp.501–519.

Ghanem, T., Aref, W. and Elmagarmid, A. (2006) ‘Exploiting
predicate-window semantics over data streams’, ACM
SIGMOD Record, Vol. 35, No. 1, pp.3–8.

Gutierrez, C., Hurtado, C. and Vaisman, A. (2007) ‘Introducing
Tme into RDF’, IEEE Transactions on Knowledge and
Data Engineering, Vol. 19, No. 2, pp.207–218.

Gyllstrom, D., Wu, E., Chae, H., Diao, Y., Stahlberg, P. and
Anderson, G. (2007) ‘SASE: complex event processing
over streams’, Proceedings of the Third Biennial
Conference on Innovative Data Systems Research (CIDR
2007), Asilomar, CA, USA.

Halaschek-Wiener, C., Parsia, B. and Sirin, E. (2006)
‘Description logic reasoning with syntactic updates’, in
Meersman, R. and Tari, Z. (Eds.): On the Move to
Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, Vol. 4275, pp.722–737.

Heintz, F., Kvarnstrom, J. and Doherty, P. (2009) ‘Stream
reasoning in dyknow: a knowledge processing middleware
system’, 1st International Workshop on Stream Reasoning,
Springer, Heraklion, Greece.

Henson, C., Neuhaus, H., Sheth, A., Thirunarayan, K.
and Buyya, R. (2009) ‘An ontological representation
of time series observations on the semantic sensor
web’, Proceedings of the 1st Int. Workshop on the
Semantic Sensor Web (SemSensWeb), collocated with
ESWC, Heraklion, Greece.

Hobbs, J. and Pan, F. (2006) Time ontology in OWL’, Available
online at http://www.w3.org/TR/ owl-time/

Kokar, M., Matheus, C. and Baclawski, K. (2009) ‘Ontology-
based situation awareness’, Information fusion, Vol. 10,
No. 1, pp.83–98.

Konstantinou, N., Solidakis, E., Zafeiropoulos, A.,
Stathopoulos, P. and Mitrou, N. (2010) ‘A context-aware
middleware for real-time semantic enrichment of
distributed multimedia metadata’, Multimedia Tools and
Applications, Vol. 46, Nos. 2–3, pp.425–461.

Le-Phuoc, D. and Hauswirth, M. (2009) ‘Linked open
data in sensor data mashups’, Proceedings of the 2nd
International Workshop on Semantic Sensor Networks
(SSN09), Washington DC, USA, pp.1–16.

Li, J., Maier, D., Tufte, K., Papadimos, V. and Tucker, P.A.
(2005) ‘Semantics and evaluation techniques for window
aggregates in data streams’, Proceedings of the 2005 ACM
SIGMOD International Conference on Management of
Data – SIGMOD ’05, Baltimore, MD, USA, pp.311–322.

Lien, C.C., Chiang, C.L. and Lee, C.H. (2007) ‘Scene- based
event detection for baseball videos’, Journal of Visual
Communication and Image Representation, Vol. 18, No. 1,
pp.1–14.

Liggins, M.E., Hall, D.L. and Llinas, J. (Eds.) (2009) Handbook
of Multisensor Data Fusion: Theory and Practice, CRC
Press, Boca Raton, FL, USA.

Little, E. and Rogova, G. (2009) ‘Designing ontologies for
higher level fusion’, Information Fusion, Vol. 10, No. 1,
pp.70–82.

16 D-E. Spanos et al.

Liu, L., Pu, C. and Tang, W. (1999) ‘Continual queries
for internet scale event-driven information delivery’,
IEEE Transactions on Knowledge and Data Engineering,
Vol. 11, No. 4, pp.610–628.

Maier, D., Tucker, P. and Garofalakis, M. (2005) ‘Filtering,
punctuation, windows and synopses’, in book Stream Data
Management, Springer, New York, USA, pp.35–58.

Motik, B., Sattler, U. and Studer, R. (2005) ‘Query answering
for OWL-DL with rules’, Web Semantics: Science,
Services and Agents on the World Wide Web, Vol. 3, No. 1,
pp.41–60.

Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A. and
Lutz, C. (2009) OWL 2 Web Ontology Language Profiles,
Available online at http://www.w3.org/TR/ 2009/PR-
owl2-profiles-20090922/

Papamarkos, G., Poulovassilis, A. and Wood, P.T. (2003)
‘Event-condition-action rule languages for the semantic
web’, Workshop on Semantic Web and Databases,
Springer, Berlin, Germany, pp.309–327.

Parsia, B., Halaschek-Wiener, C. and Sirin, E. (2006) ‘Towards
incremental reasoning through updates in OWL-DL’,
Proceedings of the Reasoning on the Web Workshop at
WWW 2006, Edinburgh, Scotland.

Patroumpas, K. and Sellis, T. (2006) ‘Window specification
over data streams’, International Conference on
Semantics of a Networked World: Semantics of Sequence
and Time Dependent Data (ICSNW’06), Springer,
Munich, Germany, pp.445–464.

Perez, J., Arenas, M. and Gutierrez, C. (2006) ‘Semantics and
complexity of SPARQL’, Proceedings of the International
Semantic Web Conference (ISWC 2006), Springer, Athens,
GA, USA, pp.30–43.

Prud’hommeaux, E. and Seaborne, A. (2008) SPARQL
Query Language for RDF, Available online at
http://www.w3.org/TR/rdf-sparql-query/

Pugliese, A., Udrea, O. and Subrahmanian, V.S. (2008) ‘Scaling
RDF with time’, Proceedings of the 17th International
Conference on World Wide Web – WWW ’08, pp.605–614.

Rodriguez, A., McGrath, R., Liu, Y. and Myers, J. (2009)
‘Semantic management of streaming data’, Proceedings
of the 2nd International Workshop on Semantic Sensor
Networks (SSN09), Washington DC, USA, pp.80–95.

Sirin, E., Parsia, B., Kalyanpur, A., Grau, B. and Katz, Y.
(2007) ‘Pellet: a practical OWL-DL reasoner’, Web
Semantics: Science, Services and Agents on the World
Wide Web, Vol. 5, No. 2, pp.51–53.

Tsarkov, D. and Horrocks, I. (2006) ‘FaCT++ description
logic reasoner: system description’, Proceedings of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
Lecture Notes in Artificial Intelligence, Springer, Seattle,
WA, USA, Vol. 4130, pp.292–297.

Volz, R., Staab, S. and Motik, B. (2005) ‘Incrementally
maintaining materializations of ontologies stored in logic
databases’, Journal on Data Semantics, Springer, Vol. 2,
pp.1–34.

Walavalkar, O., Joshi, A., Finin, T. and Yesha, Y.
(2008) ‘Streaming knowledge bases’, Fourth International
Workshop on Scalable Semantic Web Knowledge Base
Systems, Karlsruhe, Germany.

Whitehouse, K., Zhao, F. and Liu, J. (2006) ‘Semantic streams:
a framework for composable semantic interpretation of
sensor data’, Proceedings of the 3rd European Workshop
on Wireless Sensor Networks (EWSN 2006), Springer,
Zurich, Switzerland, pp.5–20.

Zhang, D. and Chang, S.F. (2002) ‘Event detection in
baseball video using superimposed caption recognition’,
Proceedings of the Tenth ACM International Conference
on Multimedia, ACM New York, NY, USA, pp.315–318.

Notes

1W3C Web Services Activity, http://www.w3.org/2002/ws/
2NoSQL databases do not typically provide any declarative
query language equivalent to SQL.

3OWLJessKB, http://edge.cs.drexel.edu/assemblies/software/
owljesskb/

4Since Jena’s ARQ engine does not allow update nested
queries, the alternative is a much more unintuitive
query, which finds as well the oldest individual in the
Knowledge Base.

